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WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 4th Semester Examination, 2022

MTMACORO8T-MATHEMATICS (CCS8)

Time Allotted: 2 Hours Full Marks: 50

The figures in the margin indicate full marks.
Candidates should answer in their own words and adhere to the word limit as practicable.
All symbols are of usual significance.

Answer Question No. 1 and any five from the rest

I. Answer any five questions from the following: 2x5=10
(a) Find the lower and upper integrals of the function.

15 xeQ
f(x)_{O ; xe¢Q

1
(b) Find the Cauchy Principal Value of j d—)SC
X

1

2
(c) Test the convergence of j

o8 X dx .
Y V2—x

2
(d) Show that B(m, n) =B(n, m), for m,n>0.
(¢) Examine whether the sequence of functions {f,} converges uniformly on R,

where foralln € N,

f,(x)= " , x€R
x+n

(D Find the limit function f(x) of the sequence {f,} on [0, «), where for alln € N,

n
X

1+x

, x=20

f}’l(x):

n

Hence, state with reason whether {f } converges uniformly on [0, o).

oo 5
(g) Show that the series Z n+l

Z [g} is uniformly convergent on [-2, 2].
on +3

(h) Find the radius of convergence of the power series: z (-1 x"

2. (a) For bounded function f defined on an interval [a, b] and any two partitions 4
P, P, of [a, b] show that L(f, B) < U(f, B,).
(b) Prove that a continuous function f defined on a closed interval [a, b] is 4

integrable in the sense of Riemann.
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3. (a) A function f:[0, 1] — Ris defined by

1 1 1
xX)=— |, <x<— , n=0,1,2,.....
f() 3}’1 3}’l+1 3}’1

=0 , x=0

1
Show that f is integrable in the sense of Riemann and '[ f(x)dx :% .
0
(b) Using Mean Value Theorem of Integral Calculus prove that

T
LA f X e
24 05+3cosx 6

b
4. (a) Show that J‘(x—a)m_l(b—x)”_1 dx=(b-a)""" B(m, n), m,n>0.

dx .

1
(b) Test the convergence of the integral '[ — xx 1
e —

5. (a) Let f (x)=(x—[x])", xe R, n eN. Show that the sequence {f,} is convergent
pointwise. Verify whether the convergence is uniform.
(b) If {f } is a sequence of functions defined on a set D converging uniformly to a

function /" on D such that each f, is continuous at some point ce D, prove that
f 1s continuous at c.

6. (a) Verify the uniform convergence of the series

oo

x
io [(m+Dx+1][nx+1]

on the interval [a, b], where 0<a<b.

(b) Show that the function f(x)= zsm nx

n=l1

1s differentiable on R. Find its

derivative.

7. (a) If a series Zan x" is convergent for some x=a # 0, then prove that the series
n=0
converges absolutely for all x with | x| <|a].

(b) Find the radius of convergence of the power series z f

n=1

> Using this, show

}’l

that the series z has the same radius of convergence.

n+l

(n+1)
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8. (a) State Dirichlet’s condition for convergence of a Fourier series.

(b) Obtain the Fourier series expansion of f(x) in [—7, 7] where

0 , —nT<x<0
xX)=
/) lﬂx , 0=x<rx
4
Hence show that the sum of the series
1 .1 _z
1> 3 5 8

9. (a) The function f :[-2, 2] > R s defined by

4024

f(x) =x+1, -2<x<0
=x-1, 0<x<£2

Find the Fourier series of the function f.

(b) Expand the function f(x)=x, 0<x < 7 in a Fourier Sine series.

N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to
their own respective colleges on the same day / date of examination within 1 hour after end
of exam. University / College authorities will not be held responsible for wrong submission

(at in proper address). Students are strongly advised not to submit multiple copies of the
same answer script.
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WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 4th Semester Examination, 2022

MTMACORO09T-MATHEMATICS (CC9)
Time Allotted: 2 Hours Full Marks: 50

The figures in the margin indicate full marks.
Candidates should answer in their own words and adhere to the word limit as practicable.
All symbols are of usual significance.

Answer Question No. 1 and any five from the rest

I. Answer any five questions from the following: 2x5=10
(a) If S be the set of all points (x, y, z) in R’ satisfying the inequality z> —x* - >0, 2
determine whether or not § is open.
(b) Show that the set S ={(x, y): x, ye O} is not closed in R, 2
(c) Prove/disprove: S={(x, y): |x| <1, |y|<I1} isopenin R, 2
d) Show that lim (x+y)=0. 2
@ (x, »)—=(0, 0)( Y)
() fu=F(y—z,z—x, x—y), then prove that 8_u+8_u+8_u: 0. 2
ox dy oz
(f) Find the gradient vector at each point at which it exists for the scalar field defined 2
by f(x, y,z)=x> -y +2z° .
(8) Use Stokes’ theorem to prove that .[ r.dr =0. 2
c
(h) What do you mean by conservative vector field? 2

2. (a) Show that the limit, when (x, ») — (0, 0) does not exist for lim 22-):)/ = 4
X Ty
(b) If f(x, y)=+lxy|, find £,(0,0), £,(0,0). 2+2
3. (a) Show that the function | x |+] y| is continuous, but not differentiable at the origin. 4
(b) Evaluate ”(x+2y) dxdy, over the rectangle R =[1, 2; 3, 5]. 4
R
4. (a) For the function f: D(cR* — R and S be a unit vector in R’ define the 4

directional derivative of f in the direction of 4 at the point (a, b)e R®. Show that
the directional derivative generalise the notion of partial derivatives.

(b) Prove that f(x, y)={|x+y|+(x+ y)}* is everywhere differentiable for all values 4
of k>0.
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5. (a) Using divergence theorem evaluate ”A-ndS, where A =(2x?, y, —z?) and

S denote the closed surface bounded by the cylinder x*+ 3> =4, z=0 and z=2
(b) Find the directional derivative of f(x, y)=2x> —xy? +5 at (1, 1) in the direction
of unit vector = %(3, 4).
1 1/x

, : : dy -1
6. (a) Show, by changing the order of integration, that | dx 4 = .
{ {(1+xy>2(1+y2> 4

2,2 2.2
(b) Show that ” \/a B oty —ay dxdy = ab— [E—IJ , where E is the region in

\/azbz it 4+ 2y2

Y =1.

the positive quadrant of the ellipse x_ + ?
a’

7. (a) Prove that of all rectangular parallelopiped of same volume, the cube has the least
surface area, using Lagrange’s multipliers method.

(b) Ifz is a differentiable function of x and y and if x = ccoshu cosv,y =csinhu sinv,
then prove that
TR

2 2
=le (cosh 2u —cos 2v) £+a—
2 ox* oy’

8. (a) Show that the vector field given by A=(y’+2z°’, 2xy—5z, 3xz>=5y) is
conservative. Find the scalar point function for the field.

(b) Evaluate .[ (ydx+zdy+xdz), applying Stokes’ Theorem, where C is the curve

given by x>+ )’ +2z° —2ax—2ay=0, x+y=2a and begins at the point (2a, 0, 0)
and goes at first below the z-plane.

9. (a) Evaluate the line integral .[ [2xydx +(e* +x*)dy] by using Green’s theorem,
c
around the boundary C of the triangle with vertices (0, 0), (1, 0), (1, 1).

(b) Find the surface area of the sphere x’+ y>+z>=9 lying inside the cylinder
x*+y*=3y.

N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to
their own respective colleges on the same day / date of examination within 1 hour after end
of exam. University / College authorities will not be held responsible for wrong submission
(at in proper address). Students are strongly advised not to submit multiple copies of the
same answer Script.
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WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 4th Semester Examination, 2022

MTMACOR10T-MATHEMATICS (CC10)

RING THEORY AND LINEAR ALGEBRA-I

Time Allotted: 2 Hours Full Marks: 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
All symbols are of usual significance.

Answer Question No. 1 and any five from the rest

I. Answer any five questions from the following: 2x5=10

0

2a
a) Show that the rin
(a) Show g {( 0 2

j ta,be Z} does not contain unity.

(b) Solve x* =x in the ring {Z, +, .} considering the equation over that ring.
g q g

(¢) In the ring R={f/ f:[0,1]—> R} w.r.t usual addition and multiplication of
functions, show that, for any fixed point c€[0,1] the set I, ={f e R/ f(c)=0}
forms an ideal.

(d) Let f:R—S be a homomorphism from a ring R to a ring S. Show that
f(=a)=—f(a) VaeR.

(e) State First Isomorphism Theorem for Rings.

(f) Write down a basis of the vectorspace R’ over R, containing (2,3,4) as a basis
vector.

(8) Examine if {(x, y)e R*:x* + y =0} is a subspace of the vectorspace R* over R.

(h) Examine if 7 :R* —R® defined by T'(x, y)=(x+y,x—y) V(x, y)e R*is a linear
transformation from the vectorspace R* over R to itself.

2. (a) Find the units and the nonzero divisors of zero in the ring {Z», +, .} 2+2
.. . a b )
(b) Examine if the ring {(Zb j ta,be ]R{} is a field. 4
a
3. (a) Show that the ring C[0,11={f/ f:[0,1] = R continuum} is a ring with unity. Is 2+2

C[0,1] an integral domain? Justify.

(b) Show that the intersection of two ideals of a ring is an ideal of that ring but union 2+2
of two ideals of a ring may not be an ideal of that ring.
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4. (a) Suppose that {R,+,.} is a ring with the property a-a=a VYV ae R. Show that R is 2+2
commutative and every element in R is self-inverse w.r.t. ‘+’.
(b) Show that the field Q has no proper subfield. 2

(c) Find all units of Z [1].

5. Determine all possible ring homomorphisms from 2+2+2+2
() Z-1Z
(b) Z3 - Zs
(c) Ze > Zs
(d) Z—-Zs

6. (a) In the ring Z,4, show that 7 ={[0],[8],[16]} is an ideal. Find all elements of the 4
quotient ring Zo4/ 1.
(b) Define linearly independent set in a vectorspace V' over R and show that any 2+2

nonempty subset of a linearly independent set in a vectorspace V" over R is again
linearly independent.

7. (a) Show that S ={(x, y,2)e R’/ x+2y+2z=0 and 2x+ y+3z=0} is a subspace of 2+2
the vectorspace R’ over R and find a basis of S.
(b) Determine all possible subspaces of the vectorspaces R® over R and R” over R. 2+2
8. Let Vand W be vectorspaces over R and 7 :/ — W be a linear transformation.
(a) Define kernel of 7. 2

(b) Show that ker7 is singleton set iff 7 is injective and in this case, image of any 24242
linearly independent subset of V' is a linearly independent subset of W.

9. (a) Show that a linear transformation 7 : R’ — R’ is injective iff it is surjective. 2+2

(b) Show that the function 7 :R> — R’ defined by T'(x, y, z) =(x—y, x+2y, y+3z) 2+2
V (x,y,z)e R’ is an invertible linear transformation and verify whether

Tl(xayaz):[zx;y y;xax_);-i_?)zj V(X,y,Z)E R3.

b

N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to
their own respective colleges on the same day / date of examination within 1 hour after end
of exam. University / College authorities will not be held responsible for wrong submission
(at in proper address). Students are strongly advised not to submit multiple copies of the
same answer Script.
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WEST BENGAL STATE UNIVERSITY
B.Sc. Honours 4th Semester Examination, 2021

MTMACORO08T-MATHEMATICS (CC8)
Time Allotted: 2 Hours Full Marks: 50

The figures in the margin indicate full marks.
Candidates should answer in their own words and adhere to the word limit as practicable.
All symbols are of usual significance.

Answer Question No. 1 and any five from the rest
1. Answer any five questions from the following: 2x5=10
(@) Prove that f :[0,3]— R defined by f(x)=x+[x] is integrable.
(b) Givc_e a_n_example, with proper justifications, of a discontinuous function which has
a primitive.

1
c) Show that the integral [—L sinldx is absolutely convergent.
© g £ 7 Siny y g

/2
(d) Evaluate j sin¥26 cos® @ d@ , assuming convergence of the given integral.
0

(¢) Examine whether the sequence of functions {f} converges uniformly on R,
where for all neN,

2
f )= yeRr
n

() Find the limit function f(x) of the sequence {f_} on [0, 1], where for all neN,

nx ; 0<x<

Sl

fn(X): 1
1 ; ﬁ<xs

Hence, state with reason whether {f_} converges uniformly on [0, 1].

(9) Show that the series ' m is uniformly convergent on R.
=1

(h) Determine the radius of convergence of the power series »_ (2+ (-1)")"x".
n=1

o0 . 2
(i) Show that the series zw

n=1

converges to a continuous function on [0, 1].
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2. (a) If afunction f:[a, b] — R be integrable and f(x) >0 for x<[a, b] and there
exists a point c e[a, b], such that f is continuous at ¢ with f(c) >0, then prove

b
that [ f >0.
(b) Let f be continuous on [a, b] and for each «, #, a<a < f<b,

B
[f(x)dx=0

Prove that f is identically zero on [a, b].

3. (a) Ifafunction f: [a, b] — R be bounded and for every ce(a, b), f is integrable
on [c, b], then prove that f is integrable on [a, b].

(b) Give an example of a function f : [0, ] — R which is integrable on [c, 1],
0 <c <1 but not integrable on [0, 1].

4. (3) Let f.: D— R be bounded functions on Dc R, for all neN so that the
sequence of functions {f } is uniformly convergent to f: D— R. Show that f
is bounded on D.

(b) Find the limit function f(x) of the sequence {f.}, where for all neN,

fn(x)zlﬂﬁ, x [0, 1]

Justify that {f } is not uniformly convergent on [0, 1]. Further show that f(x) is
Riemann integrable on [0, 1] and

lim } f.(x)dx :j f (x)dx
=% 0

5. (a) Let {a,} be a convergent sequence of real numbers and let {f } be a sequence of
functions satisfying

sup{| f,(x)—f,(xX)| : xe A} <|a,—a,|, n, meN
Prove that {f } converges uniformly on A.
(b) If
fn(x)=$I09(1+n4x2)  xe[0,1], neN,

then prove that {f,(x)} converges pointwise but not uniformly to f'(x) on [0, 1],
where f is the uniform limit function of {f }.

6. (@) Let f,:D — R be a continuous function on D, for neN. If the series > f  be
n=1
uniformly convergent on D, then prove that the sum function S is continuous on D.

(b) Study the continuity on [0, «) of the function f defined by

)= nzi‘((n 1)x+1)(nx+1)

4024 2
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7. (a) Let the series z f (x) , xe A, converges uniformly on A and that f : A— R bg
n=1

bounded. Prove that the series > f(x) f (x) converges uniformly on A.
n=1

(b) Let the series Y f.(x) of continuous functions on [a, b] converge uniformly on
n=1
[a, b] and g (x) be bounded and integrable on [a, b]. Prove that

jf(x)g(x)dx Z jf (x)g (x)dx,

n=l g

where a<a < f<b, and the convergence of the series of integrals is uniform
on [a, b].

8. (a) Let R be the radius of convergence of the power series > a x", where 0 < R <.
n=0
Prove that the series converges uniformly on [-r, r] forany 0 <r <R.

(b) Let the radius of convergence of » a x" be r. Find the radius of convergence
n=0

of > ax™.

n=0

9. () Let f(x)= 73
E_X’ 0<x<r.

Show that f(x) = izw
7T n=1 (2ﬂ _1)

(b) Examine whether the series 2% is a Fourier Series.

n=1

, Where x e[, 7].

3
10.(a) Examine the convergence of the integrals

dx and j

N"—:S

X+

(b) Show the convergence of J‘(Lj sin (x?)dx.
5 \X+1

N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to
their own respective colleges on the same day / date of examination within 1 hour after end
of exam. University / College authorities will not be held responsible for wrong submission
(at in proper address). Students are strongly advised not to submit multiple copies of the
same answer script.
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WEST BENGAL STATE UNIVERSITY
B.Sc. Honours 4th Semester Examination, 2021

MTMACOROQ09T-MATHEMATICS (CC9)
Time Allotted: 2 Hours Full Marks: 50

The figures in the margin indicate full marks.
Candidates should answer in their own words and adhere to the word limit as practicable.
All symbols are of usual significance.

Answer Question No. 1 and any five from the rest

1. Answer any five questions from the following: 2x5=10

(a) If S be the set of all points (x, y, z) in 3-space satisfying the inequality x+y+z <1, 2
determine whether or not S is open.

(b) Isthe set R" open? — Justify. 1+1

(¢) Find the closure of {(x, y) : 1< x?+y? <2}. 2

(d) When a rational function f(x) :% (where P, Q are polynomials in the 2
components of x) is continuous at each point x ?

(e) State a sufficient condition for differentiability of a function in R®. 2

(f) Find the gradient vector at each point at which it exists for the scalar field defined 2
by f (X, y) = X% + y?sin(xy) .

(9) Prove that every continuous function is double integrable. 2

(h) Express the concept of work done as a line integral. 2

() Use Green’s theorem to compute the work done by the force field 2

f(x,y)=(y+3x)i+(y—x)j in moving a particle once around the ellipse
4x? + y? =4 in the counterclockwise.

2. (@) If £(x, y)=(x*+y*)log(x*+y?) , when x*+y*=0 4
= 0 , when x2+y2=0
Show that f, (0,0) = f,(0, 0) although neither f, (x, y) nor f,(x,y) is continuous

at (0, 0).
(b) Show that the function is discontinuous at (0, 0), 4
X3 +y°
)= xoy MY
0 : X=Yy
3. (a) Prove that the function 4
Xy :
—  if (X, ¥)#(0,0)
f(a, b)=1x%+y?
0 if (x,¥)=(0,0)

is continuous at (0, 0).
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(b) Define closure of a set in R?. Find the closure of {(x, y) : x*+y? <1}.

4. (a) Show that A x B in R? is closed whenever A, B are so in R®.

(b) If z=x?+2xy then prove that dz at the point (1, 1) can be expressed as
dz = 4dx+2dy .

5. (a) Find ?j_ltj if u=x*>—ysinxy and x=—(t;1)

(b) Find the directional derivative of f(x, y)=2x?>—xy+5 at (1, 1) in the direction of
unit vector g =%(3, 4).

, y=tcost.

6. (a) Using the transformation x+y=u, y=uv, find the value of integral
1-x oy
j e’ dydx

y=0

O

dxdy
1+ x2 +y?)?
lemniscate (x% +y?)? — (x*> —y?)=0.

(b) Evaluate the integral ﬂ taken over the region of one loop of the

7. Evaluate J] f (X, y) dxdy over the rectangle R=[0,1; 0,1], where
E

Xx+y if x?<y<2x?
0 , otherwise

f(x, y)={

8. (a) Show that the vector field given by A=(y+sinz, X, xcosz) is conservative. Find
the scalar point function for the field.

(b) Evaluate I(sinzdx—cosxdy+sinydz) by Stokes Theorem, where C is the
C

boundary of the rectangle 0<x<z, 0<y<1, z=3.

9. (a) Evaluate the line integral I[(x2 —2xy)dx+(x?y +3)dy] by using Green’s theorem,
C

around the boundary C of the region defined by y? =8x, x=2.

(b) Find the work done of a particle in the force field F=(2x—y+4z, x+y—2z?,
3x—2y +4z%) moving round the circle x> +y? =4, z=0.

10.  Find the volume enclosed by the surfaces x?+y? =cz, x* +y? =2ax, z=0.

N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to
their own respective colleges on the same day / date of examination within 1 hour after end of
exam. University / College authorities will not be held responsible for wrong submission (at in
proper address). Students are strongly advised not to submit multiple copies of the same
answer script.
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WEST BENGAL STATE UNIVERSITY
B.Sc. Honours 4th Semester Examination, 2021

MTMACOR10T-MATHEMATICS (CC10)

RING THEORY AND LINEAR ALGEBRA-I
Time Allotted: 2 Hours Full Marks: 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
All symbols are of usual significance.

Answer Question No. 1 and any five from the rest
1. Answer any five questions from the following: 2x5=10
(a) Show that Z, is not a field, when n is not a prime.

a 0
(b) Show that the set {0 b) ‘a,be Z} of diagonal matrices is a subring of the ring

of all 2 x 2 matrices over Z.
(c) Give an example of a ring having exactly 25 points.
(d) Aretherings Z and 2Z isomorphic? — Justify your answer.
(e) Show that any field is a simple ring i.e., it has no non-trivial proper ideal.
(f) Extend the set S={(1, 2, 1), (2, 1, 1)} to obtain a basis of the vector space R®.

(g) Show that the intersection of any family of subspaces of a vector space V over a
field F is a subspace of V.

(h) Let T: R?— R® be the linear transformation defined by T (a, b) = (a+3b, 0, 2a—4b).
Let 8 and » be the standard ordered bases for R* and R® respectively. Find [T1;.

(i) Determine all possible linear transformations from the vector space of all real
numbers to itself,

2. (@ If R is an integral domain of prime characteristic p, then prove that 4
(a+b)P =aP +bP.

b
(b) Prove that the ring of matrices {(;3 aj 3, be Q} is a field, where Q is the set 4

of all rational numbers.

3. (a) Let R be a ring with identity 10, such that R has no non-trivial left ideal. Show 4
that R is a division ring.

(b) Let neZ be a fixed positive integer. If n is a prime, show that Z/(n) is a field, 4
where (ny={gn : qeZ}and Z/{ny={a+{n) : aeZ}.

4. (a) Give an example to show that the homomorphic image of an integral domain need 4
not be an integral domain.
(b) Let f be a homomorphism of a ring R into a ring R’. Then show that f(R) is an 4

ideal of R" and R/ker f = f(R).
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5. (a)

(b)

(b)

(b)

(b)

(b)

10.(a)

(b)

4124

Suppose F is a field and there is a ring homomorphism from Z onto F. Show thét
F =~ Zj, for some prime p.

Let f be a homomorphism ofaring R into aring R’. Then show that

() if R is commutative, then f(R) is commutative and

(i) if R has an identity and f (R)=R’, then R’ has an identity.

Let S be a non-empty subset of a vector space V over a field F. Then show that
L(S), the linear span of S is the smallest subspace of V containing S.

Show that S ={(x, v, z) eR®: 2x+y—z =0} is a subspace of the vector space R®,
Find a basis and the dimension of S.

Let W,, W, be two subspaces of a finite dimensional vector space V over a field F.
Show that dim (W, +W,) =dim (W,) +dim (W,) —dim (W, "W,).
Determine all possible subspaces of the vector space R*over R.

Let V be a vector space over a field F, with a basis consisting of n elements. Then
show that any n+1 elements of V are linearly dependent.

Show that S ={(x, y) e R? : x* = y?} is not a subspace of the vectors space R?over
R. Find the smallest subspace of R? containing S.

Let V and W be vector spaces over the same field F and let {¢, ..., .} be an
ordered basis for V. If g, ..., B, be any n vectors in W, then prove that there is
precisely one linear transformation T :V —W such that T(¢;) =4, i=1 ...,n.

Show that T : R® — R® defined by T(X, y, 2) =(y+2z, z+X, X+Y), V(X Y, 2) eR®
is a linear transformation.

Is it one-one? Justify your answer.

Is it onto? Justify your answer.

Let V and W be vector spaces over a field F of equal (finite) dimension and let
T:V >W be linear. If rank(T)=dim(V), then show that T is one-to-one and

onto.

A linear transformation T : P, (R) - M,,_, (R) is defined by
f()-f(2 0
T(f(x))=( ()O (2) f(O)j' where P,(R) is the collection of all polynomials

over R of degree atmost 2 and M., (R) is the collection of all 2 x 2 matrices
over R. Find rank(T).

N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to
their own respective colleges on the same day / date of examination within 1 hour after end
of exam. University / College authorities will not be held responsible for wrong submission
(at in proper address). Students are strongly advised not to submit multiple copies of the
same answer script.
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WEST BENGAL STATE UNIVERSITY
B.Sc. Honours 4th Semester Examination, 2020

MTMACORO08T-MATHEMATICS (CC8)

Time Allotted: 2 Hours Full Marks: 50

The figures in the margin indicate full marks.
Candidates should answer in their own words and adhere to the word limit as practicable.
All symbols are of usual significance.

Answer Question No. 1 and any five from the rest
1. Answer any five questions from the following: 2x5=10
(@) Let f(x)=c, 0<x<c

=2C, c<x<l.
b 7
If j f (x)dx = — , find the value of c.
! 16

(b) Let f :[0,1] — R be defined by
f(x):l, L<x£1
n n+1 n
=0, x=0.

Show that f is Riemann integrable.

, heN,

sin X

Vx+x3

(d) Assuming convergence of the integral, evaluate j Jx e X dx.
0

(c) Show that the integral _[ dx is absolutely convergent.
1

(€) For neN, f (x)=x", x<[0,1). Find the limit function of {f } and check the
validity of lim lim f_(x) = lim lim f_(x).

X—1 n—o0 n—o Xx—1

(f) For neN, f (x) =1X—nn, x €[0,2]. Find the limit function of {f } and check
+ X
the continuity of the limit function. Is the convergence uniform?

sin nx
n2

(g) Show that the series Z converges uniformly on R.
n=1

(h) Find the radius of convergence of the power series Z 1.35..(2n-1) x" .
= 258..(3n-1)

2. (a) If f:[a,b]—>R be a bounded function. Prove that f is Riemann integrable over 4
[a, b] if and only if for any & >0 there is a partition P of [a, b] such that

U, f)—L(P, f)<e.
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(b) Give an example with proper justification of a Riemann integrable function which
has no primitive.

1
3. (8) Examine the convergence of J.x“"1 log xdx for p>0.
0

(b) Apply Dirichlet’s test to show that Icos(xz) dx is convergent.
0

4. (@) If DcR and each function f :D—R of the sequence of functions{f }be
continuous on D and {f } converges uniformly to f on D then prove that f is
continuous on D.

(b) Show that the sequence of functions f_ defined on [0, 1] by

f,(X) =x@—-nx) , Osx<%

= 0, l£x£1
n

converges to the function fgiven by f(x)=0, x [0, 1]. Show that

1 1
lim J f.(x)dx ;tj f (x) dx. Is the convergence of the sequence uniform?
0 0

5. (a) Let the power series Zanx” converge at a point ¢=0. Show that the series

n=0
converges absolutely for all x e R such that | x| <]|c]|.
(b) Assuming I 1 > =1-x"+x*—x%+... for —1<x<1, obtain the power series
+ X

expansion for tan™! x. Also deduce that 1— 1 + 11 bo.=Z,
3 5 7 4

6. Show that the function defined by
f()=(z—|x)? xe[-z7]

satisfies the Dirichlet’s condition in [—7,7z]. Obtain the Fourier series of f (x) in

_ 1 7% ang S L _xt
[ ﬂ,ﬂ].Hencededucethath;nz =7 and nZ:‘in4 =25

1
7. (a) Show that Ixmfl(l— x)"dx is convergent if and only if m>0, n>0.
0

: F(m;—ljr(nglj
(b) Show that Isinmecos” 0 do= _
0

2F(m+n+2j
2
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8. (@) A function f is defined on [0, 1] by B2
f(x)=(D"?* when L <x§1, n=123..
n+1 n
=0 when x = 0.

1
Prove that f is integrable on [0, 1] and jf = Iogg.
0

3 72 2 3

(b) Show that - < I _ X wx<E 4
9% 7, 5+3sinx 24

9. (@) The sequence of continuous functions {hn} is uniformly convergent on [a, b] and 4

X
gn(x)zjhn(x)dx, a<x<b. Prove that the sequence {g } is uniformly
a

convergent on [a, b].
(b) Examine the uniform convergence of the sequence of functions {g _} where for 4

- - _ nX
each neN, g_ is defined by g”(x)_1+n3x2 , Xe[0,1].

N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp
to their own respective colleges on the same day / date of examination within 1 hour after
end of exam. University / College authorities will not be held responsible for wrong
submission (at in proper address). Students are strongly advised not to submit multiple
copies of the same answer script.
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MTMACORQ09T-MATHEMATICS (CC9)

Time Allotted: 2 Hours Full Marks: 50

The figures in the margin indicate full marks.
Candidates should answer in their own words and adhere to the word limit as practicable.
All symbols are of usual significance.

Answer Question No. 1 and any five from the rest
1. Answer any five questions from the following: 2x5=10

(8) Find the closure of {(x,y): x%+y? <1}.
(b) Check whether S ={(0,1)} is open or closed in R?.
(c) Show that f(x,y)=]|x]|+]y]| is not differentiable at (0, 0).

(d) 1f u= f(x?+2yz, y?+22x) then prove that
2 _ ) OU | (%2 _\7)OU | (72 _ ) OU _
(Y =25+ (X"~ y2) oy +(2°-xy) 5, =0.

(e) Show that the function f(x,y)=2x*-3x?y+y? has neither a maximum nor a
minimum at (0, 0).

(f) Evaluate J.(yzdx—xzdy) along the straight line joining (0, 1) and (1, 0).
C

(g) Find the work done in moving a particle in the force field F =(3x?, 2xz -y, z)
along the straight line joining (0, 0, 0) and (2, 1, 3).

(h) Check whether the vector field given by F =(y?+ 23 2xy -5z, 3xz%-5y) is
conservative or not.

2. (@) A rectangular box open at the top is to have a volume of 32 cc. Find the 4+4
dimensions of that box which requires least material for construction.

(b) Let f, a function of two variables x and y be continuous at an interior point (a, b)
of its domain of definition, and f(a,b)#0. Show that there exists a
neighbourhood of (a,b) in which f(x,y) retains the same sign as that of
f(a, b).

3. (a) Afunction f(x,y) is defined as: 4+4
Xy . (x
5, (xy)=(00)
f(Xy)=1yx*+y?

0 5 (xy=(00
Show that f is continuous but not differentiable at (0, 0).
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. 2 .
im me‘“'/y exists or not.

(b) Check whether | 5
(xy)—>(00) y

4. (a) Evaluate _U (x+ y)dxdy over the rectangle R=[0,1; 0, 2]. 4+4
R

(b) Prove that f(x,y)={x+y|+ (x+ y)}<is everywhere differentiable for all values
of k>0.

5. (@) Let f:S—R be a function where ScR? If f is continuous at a point (2+2) +
(a,b)eS, then show that f(x,b) is continuous at x=a and f(a,y) is (1t1+1+1)
continuous at y =b. Is the converse true? Justify your answer.

(b) f(x,y) is defined as:

F(x,y) = Xsing+ysinyg xy =0
0 ;7 o xy=0
Show that ( I)im(0 0 f (x,y) exists but the repeated limits do not exist. Is f(Xx,y)
X, ¥)—>(0,

continuous at (0, 0)?

6. (@) By changing the order of integration prove that 4+4
1 Yx Zd
Idx y ay
0 x(x+y)2Lry

(b) If a differentiable function f(x,y) of two variables x and y when expressed in

1
:5(2\/5—1)

terms of new variables u and v defined by x:% and y=-/uv becomes

g(u,v), then show that
0’9 1(0%f ox 0*f 0%°f qof
+_— i
y oy

ouov 4| ax2 Ty axay+ﬁ+

7. (@) If %+%+%:1, show that a stationary value of a®x?+b®y?+c%z? is given by 4+4

ax=hy =cz, and this gives an extreme value if abc(a+b+c) is positive.

2

2
+Z—2=1 and the cylinder

2
(b) Find the volume common to the ellipsoid X—2+ y
a C

b?
x2+y2=ay.

8. (8) Use Stokes’ theorem to prove that div(curl F)=0 and curl (grad ¢) =0. Where 4+4
F(x,y,z) is a vector function and #(X, y, z)is a scalar function.

(b) Evaluate f[(l— x?)ydx + (1+ y?)xdy], where C is x? +y? =a?.
C

9. (8) Find the surface area of the sphere x?+y?+2z%2=9 lying inside the cylinder 4+4
X% +y%=3y.

4074 2
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(b) Use divergence theorem to evaluate
H (x3dydz + x*y dzdx + x*z dxdy)
S

where S is the closed surface bounded by the planes z=0, z=Db and the cylinder
X2 +y? =a?.

N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp
to their own respective colleges on the same day / date of examination within 1 hour after
end of exam. University / College authorities will not be held responsible for wrong
submission (at in proper address). Students are strongly advised not to submit multiple
copies of the same answer script.
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Candidates are required to give their answers in their own words as far as practicable.
All symbols are of usual significance.

Answer Question No. 1 and any five from the rest
1. Answer any five questions from the following: 2x5=10

(@) Show that the characteristic of a ring R with unity 1 is n(>0) if and only

if n1=0.
(b) LetR be aring with a®=a for all acR. Prove that a+b=0=a=b,
(c) Let S be a nonempty subset of a ring R. Show that S is a subring of R if and only

if VX, yeS, x—yeSand xyeS.
(d) If Fis a field, then show that F has no non-trivial ideal.
(e) Show that the rings 2Z and 3Z are not isomorphic.
(f) If W, W, are two subspaces of a vector space V over a field F such that

W, +W, =V and W, "W, ={0} then prove that for each vector « €V there are
unique vectors o; €W, and o, €W, such that o = + a,.

(9) LetV be a vector space over a subfield F of the complex numbers. Suppose «, 3, ¥
are linearly independent vectors of V. Prove that («+ ), (8+y) and (y+«) are
linearly independent.

(h) Let V and W be two vector spaces over the same field F and let T:V —W be a
linear transformation. If V is finite dimensional, define the rank and nullity of T.

2. (a) Prove that a commutative ring R satisfies cancellation property for multiplication if 4
and only if R has no zero divisors.

(b) Prove that the characteristic of an integral domain is either zero or a prime integer. 4

3. (a) Show that the set of integers modulo 6 form a ring with respect to the addition and 3+1

multiplication modulo 6.
Is it an integral domain? — Justify your answer.

(b) Prove that every finite integral domain is a field. Give an example to show that the 3+1
result is false if the 'finiteness' condition is dropped.
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4.

(@) Let R be a commutative ring with identity 1. Show that an ideal M in R is maximgl
if and only if the quotient ring R/M s a field.

(b) Let I be an ideal of a commutative ring R. Define a subset S of R by
S={reR:ra=0 forall ael}.ProvethatS isan ideal of R.

. (a) Letf be a homomorphism of a ring R into a ring R’. Show that f(R)is an ideal of

R'and R/ker f = f(R).

(b) Show that Z,, the ring of integers modulo n and the quotient ring Z/(n) are
isomorphic, where (ny ={m eZ :m=qn for some q eZ}.

(@) Show that the mapping f : Zs — Zj defined by f([a]) =5[a] for all [a]eZs is a
ring homomorphism from the ring Zs into the ring Zo.

(b) Define Kernel of a ring homomorphism f: R — S from a ring R into a ring S.
Prove that ker f is an ideal of R.

(@) Prove that every set of linearly independent vectors of a finite dimensional vector
space is either a basis or can be extended to a basis of the vector space.

(b) Let W ={(x,y,z) € R® : x—4y+3z=0}. Show that W is a subspace of R*. Also
find a basis of W.

. (@) Let V and W be two vector spaces over a field F. Prove that a necessary and

sufficient condition for a linear mapping T : V — W to be invertible is that T is
one-to-one and onto.

(b) A linear mapping T : R®*— R is defined by
T(Xg, Xo, Xg) =(2X + Xy — X3, Xo +4X5, X — X, +3X%3), (X, X5, X3) cR®

Find the matrix representation of T relative to the ordered basis (0, 1, 1), (1, 0, 1),
(1, 1, 0) of R®.

(@) If V and W be two finite dimensional vector spaces and T : V — W is a linear
transformation, then show that dim V = nullity of T + rank of T.

(b) Find the linear transformation T : R® — R®, if
T(1,0,0)=(2,3,4), T(0,1,0)=(1,5,6)and T(1, 1, 1) = (7, 8, 4).
Also find its matrix representation with respect to {(1, 0, 0), (0, 1, 0), (1, 1, 1)}.

N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to
their own respective colleges on the same day / date of examination within 1 hour after end
of exam. University / College authorities will not be held responsible for wrong submission
(at in proper address). Students are strongly advised not to submit multiple copies of the
same answer script.
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