Thin Film Deposition

Physical Vapor Deposition (PVD)

- Film is formed by atoms directly transported from source to the substrate through gas phase
 - Evaporation
 - Thermal evaporation =
 - E-beam evaporation
 - Sputtering
 - DC sputtering
 - DC Magnetron sputtering
 - RF sputtering
 - Reactive PVD

Chemical Vapor Deposition (CVD)

- Film is formed by chemical reaction on the surface of substrate
 - Low-Pressure CVD (LPCVD)
 - Plasma-Enhanced CVD (PECVD)
 - Atmosphere-Pressure CVD (APCVD)
 - Metal-Organic CVD (MOCVD)

Oxidation Spin Coating Platting

Evaporation

- Load the source material-to-bedeposited (evaporant) into the container (crucible)
- Heat the source to high temperature
- Source material evaporates
- Evaporant vapor transports to and Impinges on the surface of the substrate
- Evaporant condenses on and is adsorbed by the surface

Langmuire-Knudsen Relation

Mass Deposition Rate per unit area of source surface:

$$R_m = C_m \left(\frac{M}{T}\right)^{\frac{1}{2}} \cos\theta \cos\varphi \frac{1}{r^2} \left(P_e(T) - P\right)$$

 $C_m = 1.85 \times 10^{-2}$

source-substrate distance (cm)

T: source temperature (K)

P_e: evaporant vapor pressure (torr), function of T

chamber pressure (torr)

evaporant gram-molecular mass (g)

Maximum deposition rate reaches at high chamber vacuum (P ~ 0)

Source (K-Cell)

Uniform Coating

Spherical surface with source on its edge:

$$\cos\theta = \cos\varphi = \frac{r}{2r_0}$$

$$R_m = C_m \left(\frac{M}{T}\right)^{\frac{1}{2}} \frac{P_e}{4r_0^2}$$

→ Angle Independent – uniform coating!

Used to coat instruments with spherical surfaces

Spherical Surface

Source (K-Cell)

Uniformity on a Flat Surface

Consider the deposition rate difference between wafer center and edge:

$$R_1 \propto \frac{1}{r_1^2}$$

$$R_2 \propto \frac{1}{r_2^2} \cos^2 \theta = \frac{r_1^2}{r_2^4}$$

Define Uniformity:

$$\sigma(\%) = \frac{R_1 - R_2}{R_1} (\%)$$

$$\sigma = 1 - \left(1 + \left(\frac{W}{2r_1}\right)^2\right)^{-2} \approx \frac{W^2}{2r_1^2} \quad \text{or} \quad \left|\frac{W}{r_1} = \sqrt{2\sigma}\right|$$

Source (K-Cell)

Thickness Deposition Rate vs. Source Vapor Pressure

Thickness deposition rate

$$\frac{dh}{dt} = \frac{R_m}{\rho} A_e$$

$$\frac{dh}{dt} = \frac{A_e}{\rho} C_m \left(\frac{M}{T}\right)^{\frac{1}{2}} \cos\theta \cos\phi \frac{1}{r^2} P_e(T)$$

source temperature (K)

A_a: source surface area (cm²)

evaporant density (g/cm3)

P_e is function of source Temperature!

Example: Al

 $M \sim 27$, $\rho \sim 2.7$, $A_a \sim 10^{-2}$ cm², $T \sim 900$ K

R ~ 50 cm (uniformity requirement)

$$\frac{dh}{dt} = 50P_e \quad \text{(A/s)}$$

The higher the vapor pressure, the higher the material's deposition rate

Contamination Problem with Thermal Evaporation

Container material also evaporates, which contaminates the deposited film

-

Heating Method – e-Beam Heater

CIMS' Sharon E-Beam Evaporator

Comparison

Deposition	Material	Typical Evaporant	Impurity	Deposition Rate	Temperature Range	Cost
Thermal	Metal or low melt-point materials	Au, Ag, Al, Cr, Sn, Sb, Ge, In, Mg, Ga CdS, PbS, CdSe, NaCl, KCl, AgCl, MgF ₂ , CaF ₂ , PbCl ₂	High	1 ~ 20 A/s	~ 1800 °C	Low
E-Beam	Both metal and dielectrics	Everything above, plus: Ni, Pt, Ir, Rh, Ti, V, Zr, W, Ta, Mo Al2O3, SiO, SiO2, SnO2, TiO2, ZrO2	Low	10 ~ 100 A/s	~ 3000 °C	High

Stoichiometrical Problem of Evaporation

- Compound material breaks down at high temperature
- Each component has different vapor pressure, therefore different deposition rate, resulting in a film with different stoichiometry compared to the source

DC Diode Sputtering Deposition

- Target (source) and substrate are placed on two parallel electrodes (diode)
- They are placed inside a chamber filled with inert gas (Ar)
- DC voltage (~ kV) is applied to the diode
- Free electron in the chamber are accelerated by the e-field
- These energetic free electrons inelastically collide with Ar atoms
 - ★ excitation of Ar → gas glows
 - ★ ionization of Ar → Ar+ + 2nd electron.
- 2nd electrons repeat above process
 - "gas breakdown"
 - discharge glow (plasma)

Self-Sustained Discharge

- Near the cathode, electrons move much faster than ions because of smaller mass
 - positive charge build up near the cathode, raising the potential of plasma
 - less electrons collide with Ar
 - few collision with these high energetic electrons results in mostly ionization, rather than excitation
 - dark zone (Crookes Dark Space)
- Discharge causes voltage between the electrodes reduced from ~10³ V to ~10²V, mainly across the dark space
- Electrical field in other area is significantly reduced by screening effect of the position charge in front of cathode
- Positive ions entering the dark space are accelerated toward the cathode (target), bombarding (sputtering) the target
 - atoms locked out from the target transport to the substrate (momentum transfer, not evaporation!)
 - → generate 2nd electrons that sustains the discharge (plasma)

Requirement for Self-Sustained Discharge

- If the cathode-anode space (L) is less than the dark space length
 - ionization, few excitation
 - cannot sustain discharge
- On the other hand, if the Ar pressure in the chamber is too low
 - Large electron mean-free path
 - → 2nd electrons reach anode before colliding with Ar atoms
 - cannot sustain discharge either

Condition for Sustain Plasma:

$$L \cdot P > 0.5 \ (cm \cdot torr)$$

L: electrode spacing, P: chamber pressure

For example:

Typical target-substrate spacing: L ~ 10cm

▶ P > 50 mtorr

RF (Radio Frequency) Sputtering

DC sputtering cannot be used for depositing dielectrics because insulating cathode will cause charge build up during Ar⁺ bombarding

- reduce the voltage between electrodes
- discharge distinguishes

Solution: use AC power

- at low frequency (< 100 KHz), both electrons and ions can follow the switching of the voltage –
 - DC sputtering
- at high frequency (> 1 MHz), heave ions cannot no long follow the switching
 - ions are accelerated by dark-space (sheath)
 voltage
 - electron neutralizes the positive charge buildup on both electrodes
- However, there are two dark spaces
 - sputter both target and substrate at different cycle

RF (Radio Frequency) Sputtering

$$\frac{V_T}{V_S} \propto \left(\frac{A_S}{A_T}\right)^n \quad (n \sim 2)$$

V_⊤ - voltage across target sheath

V_s − voltage across substrate sheath

 A_T - area of target electrode

A_s - area of substrate electrode

Larger dark-space voltage develops at the electrode with smaller area

make target electrode small

Comparison between Evaporation and Sputtering

Evaporation	Sputtering			
Low energy atoms (~ 0.1 eV)	High energy atoms / ions (1 – 10 eV) • denser film • smaller grain size • better adhesion			
High Vacuum • directional, good for lift-off • lower impurity	Low Vacuum • poor directionality, better step coverage • gas atom implanted in the film			
Point Source • poor uniformity	Parallel Plate Source • better uniformity			
Component Evaporate at Different Rate • poor stoichiometry	All Component Sputtered with Similar Rate • maintain stoichiometry			

Chemical Vapor Deposition (CVD)

Deposit film through chemical reaction and surface absorption

- · Introduce reactive gases to the chamber
- Activate gases (decomposition)
 - → heat
 - → plasma
- Gas absorption by substrate surface
- Reaction take place on substrate surface;
 film firmed
- Transport of volatile byproducts away form substrate
- Exhaust waste

Types of CVD Reactions

Pyrolysis (Thermal Decomposition)

$$AB(gas) \rightarrow A(solid) + B(gas)$$

Example

 α -Si deposited at 580 - 650 °C:

$$SiH_4(gas) = Si(solid) + 2H_2(gas)$$

Reduction (lower temperature than Pyrolysis)

$$AB(gas) + H_2(gas, commonly used) \leftrightarrow A(solid) + HB(gas)$$

Example

W deposited at 300 °C:

$$WF_6(gas) + 3H_2(gas) = W(solid) + 6HF(gas)$$

Reversible process, can be used for chamber cleaning

Types of CVD Reactions (Cont.)

Compound Formation

$$AB(gas\ or\ solid) + XY(gas\ or\ solid) \leftrightarrow AX(solid) + BY(gas)$$

Example

SiO2 formed through wet oxidation at 900 - 1100 °C:

$$Si(Solid) + 2H_2O(vapor) = SiO_2(solid) + 2H_2$$

Example

SiO2 formed through PECVD at 200 - 400 °C:

$$Si H_4(gas) + 2N_2O(gas) = SiO_2(solid) + 2N_2 + 2H_2$$

Example

Si₃N₄ formed through LPCVD at 700 - 800 °C:

$$3Si H_2Cl_2(gas) + 4NH_3(gas) = Si_3N_4(solid) + 6H_2 + 6HCl$$

Comparison of Typical Thin Film Deposition Technology

Process	Material	Uniformity	Impurity	Grain Size	Film Density	Deposition Rate	Substrate Temperature	Directional	Cost
Thermal Evaporation	Metal or low melting- point materials	Poor	High	10 ~ 100 nm	Poor	1 ~ 20 A/s	50 ~ 100 °C	Yes	Very low
E-beam Evaporation	Both metal and dielectrics	Poor	Low	10 ~ 100 nm	Poor	10 ~ 100 A/s	50 ~ 100 °C	Yes	High
Sputtering	Both metal and dielectrics	Very good	Low	~ 10 nm	Good	Metal: ~ 100 A/s Dielectric: ~ 1-10 A/s	~ 200 °C	Some degree	High
PECVD	Mainly Dielectrics	Good	Very low	10 ~ 100 nm	Good	10 - 100 A/s	200 ~ 300 °C	Some degree	Very High
LPCVD	Mainly Dielectrics	Very Good	Very low	1 ~ 10 nm	Excellent	10 - 100 A/s	600 ~ 1200 °C	Isotropic	Very High