Satellite Remote Sensing (UG Hone Vear)

Dr. Chandan Surabhi Das Asst. Prof. in Geography Barasat Govt. College

Outline

- Remote Sensing Defined
- Resolution
- Electromagnetic Energy (EMR)
- □ Types
- Interpretation
- Applications

Remote Sensing Defined

Remote Sensing is:

"The art and science of obtaining information about an object without being in direct contact with the object" (Jensen 2000).

There is a medium of transmission involved.

Remote Sensing Defined

Environmental Remote Sensing:

- In the collection of information about Earth surfaces and phenomena using sensors not in physical contact with the surfaces and phenomena of interest.
- We will focus on data collected from an overhead perspective via transmission of electromagnetic radiation.

Source: Jensen (2000)

Remote Sensing Defined

□ Remote Sensing Includes:

- A) The mission plan and choice of sensors;
- B) The reception, recording, and processing of the signal data; and

C) The analysis of the resultant data.

Remote Sensing Process Components

Source: Canadian Centre for Remote Sensing

Energy Source or Illumination (A)

Radiation and the Atmosphere (B)

Interaction with the Target (C)

Recording of Energy by the Sensor (D)

Transmission, Reception, and Processing (E)

Interpretation and Analysis (F)

Application (G)

Resolution

All remote sensing systems have <u>four types</u> of resolution:

Spatial

Spectral

Temporal

Spatial Resolution

High vs. Low?

Source: Jensen (2000)

Spectral Resolution

Source: Jensen (2000)

Temporal Resolution

Radiometric Resolution

 $\begin{array}{c} 6\text{-bit range} \\ 0 \longrightarrow 63 \end{array}$

8-bit range

0 → 255

10-bit range

0-

► 1023

Electromagnetic Radiation

Spatial Resolution Example

Radiometric Resolution

The number of gray levels that can be differentiated by a sensor

Electromagnetic Spectrum

Signature Spectra

Types of Remote Sensing

Aerial Photography

Multispectral

Active and Passive Microwave and LIDAR

Aerial Photos

- Balloon photography (1858)
- Pigeon cameras (1903)
- Kite photography (1890)
- Aircraft (WWI and WWII)
- □ Space (1947)

Images: Jensen (2000)

Multispectral

□ NOAA-AVHRR (1100 m) □ GOES (700 m) MODIS (250, 500, 1000 m) \Box Landsat TM and ETM (30 – 60 m) □ SPOT (10 – 20 m) IKONOS (4, 1 m) \Box Quickbird (0.6 m)

AVHRR (Advanced Very High Resolution Radiometer) NASA

GOES (Geostationary Operational Environmental Satellites) IR 4

Landsat TM (False Color Composite)

SPOT (2.5 m)

QUICKBIRD (0.6 m)

IKONOS (4 m Multispectral)

IKONOS (1 m Panchromatic)

UND

RADAR (Radio Detection and Ranging)

LIDAR (Light Detection and Ranging)

Image: Bainbridge Island, WA courtesy Pudget Sound LIDAR Consortium, 2005

□ Shape:

- Many natural and human-made features have unique shapes.
- Often used are adjectives like linear, curvilinear, circular, elliptical, radial, square, rectangular, triangular, hexagonal, star, elongated, and amorphous.

□ Shadow:

- Shadow reduction is of concern in remote sensing because shadows tend to obscure objects that might otherwise be detected.
- However, the shadow cast by an object may be the only real clue to its identity.
- Shadows can also provide information on the height of an object either qualitatively or quantitatively.

Tone and Color:

- A <u>band</u> of EMR recorded by a remote sensing instrument can be displayed on an image in shades of gray ranging from black to white.
- These shades are called "tones", and can be qualitatively referred to as dark, light, or intermediate (humans can see 40-50 tones).
- Tone is related to the amount of light reflected from the scene in a specific wavelength interval (band).

Tone and Color

IND

Texture:

- Texture refers to the arrangement of tone or color in an image.
- Useful because Earth features that exhibit similar tones often exhibit different textures.
- Adjectives include smooth (uniform, homogeneous), intermediate, and rough (coarse, heterogeneous).

Texture

Pattern:

- Pattern is the spatial arrangement of objects on the landscape.
- General descriptions include random and systematic; natural and human-made.
- More specific descriptions include circular, oval, curvilinear, linear, radiating, rectangular, etc.

Pattern

IND

Height and Depth:

- As discussed, shadows can often offer clues to the height of objects.
- In turn, relative heights can be used to interpret objects.
- In a similar fashion, relative depths can often be interpreted.
- Descriptions include tall, intermediate, and short; deep, intermediate, and shallow.

Association:

This is <u>very</u> important when trying to interpret an object or activity.

<u>Association</u> refers to the fact that certain features and activities are almost always related to the presence of certain other features and activities.

Association

Imaging Tools and Data

□ Google Earth

ERDAS Imagine

Digital Northern Great Plains

UN

THANK YOU

