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FLOWS ON THE LINE

2.0 Introduction

In Chapter 1, we introduced the general system

X = filxg, oux,)
X, =f,(x, ....x,)

and mentioned that its solutions could be visualized as trajectories flowing through
an n-dimensional phase space with coordinates (x,, ...,x,). At the moment, this
idea probably strikes you as a mind-bending abstraction. So let’s start slowly, be-
ginning here on earth with the simple case n=1. Then we get a single equation of
the form

%= f(x).

Here x(¢) is a real-valued function of time ¢, and f(x) is a smooth real-valued
function of x. We’ll call such equations one-dimensional or first-order systems.

Before there’s any chance of confusion, let’s dispense with two fussy points of
terminology:

1. The word system is being used here in the sense of a dynamical system,
not in the classical sense of a collection of two or more equations. Thus
a single equation can be a “system.”

2. We do not allow f to depend explicitly on time. Time-dependent or
“nonautonomous” equations of the form x = f(x,t) are more compli-
cated, because one needs two pieces of information, x and ¢, to predict
the future state of the system. Thus x = f(x,7) should really be re-
garded as a two-dimensional or second-order system, and will there-
fore be discussed later in the book.
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2.1 A Geometric Way of Thinking

Pictures are often more helpful than formulas for analyzing nonlinear systems.
Here we illustrate this point by a simple example. Along the way we will introduce
one of the most basic techniques of dynamics: interpreting a differential equation
as a vector field.

Consider the following nonlinear differential equation:

x = sin x. (1)

To emphasize our point about formulas versus pictures, we have chosen one of the
few nonlinear equations that can be solved in closed form. We separate the vari-
ables and then integrate:

dx
. )
sin x

dt=

which implies

t=J.cscxdx

=—In|escx+cotx| + C.

To evaluate the constant C, suppose that x = x, at t =0. Then C = lnl Csc X, +cot x, |

Hence the solution is

CSC X, + cot x
tr=1In kit BtV

(2)

csCx +cotx

This result is exact, but a headache to interpret. For example, can you answer
the following questions?

1. Suppose x, = m/4; describe the qualitative features of the solution x(r)
for all £ > 0. In particular, what happens as t — e ?

2. For an arbitrary initial condition x,, what is the behavior of x(r) as
t—> oo ?

Think about these questions for a while, to see that formula (2) is not transparent.

In contrast, a graphical analysis of (1) is clear and simple, as shown in Figure
2.1.1. We think of ¢ as time, x as the position of an imaginary particle moving
along the real line, and x as the velocity of that particle. Then the differential
equation x = sin x represents a vector field on the line: it dictates the velocity vec-
tor x ateach x. To sketch the vector field, it is convenient to plot x versus x, and
then draw arrows on the x-axis to indicate the corresponding velocity vector at
each x. The arrows point to the right when % >0 and to the left when x < 0.
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Figure 2.1.1

Here’s a more physical way to think about the vector field: imagine that fluid
is flowing steadily along the x-axis with a velocity that varies from place to
place, according to the rule x =sin x. As shown in Figure 2.1.1, the flow is to the
right when x >0 and to the left when x < 0. At points where x =0, there is no
flow; such points are therefore called fixed points. You can see that there are two
kinds of fixed points in Figure 2.1.1: solid black dots represent stable fixed
points (often called attractors or sinks, because the flow is toward them) and
open circles represent unstable fixed points (also known as repellers or
sources).

Armed with this picture, we can now easily understand the solutions to the dif-
ferential equation x = sin x. We just start our imaginary particle at x, and watch
how it is carried along by the flow.

This approach allows us to answer the questions above as follows:

1. Figure 2.1.1 shows that a particle starting at x, = 7/4 moves to the
right faster and faster until it crosses x = /2 (where sinx reaches its
maximum). Then the particle starts slowing down and eventually ap-
proaches the stable fixed point x =7z from the left. Thus, the qualita-
tive form of the solution is as shown in Figure 2.1.2.

Note that the curve is concave up at first, and then concave down;
this corresponds to the initial acceleration for x < /2, followed by the
deceleration toward x = 7.

2. The same reasoning applies to any initial condition x,. Figure 2.1.1
shows thatif x >0 initially, the particle heads to the right and asymptot-

ically approaches the nearest sta-
ble fixed point. Similarly, if

- - - - - === x <0 initially, the particle ap-

proaches the nearest stable fixed

point to its left. If x =0, then x

remains constant. The qualitative

T .
4 form of the solution for any ini-
L ¢ tial condition is sketched in Fig-
_ ure 2.1.3.
Figure 2.1.2
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Figure 2.1.3

In all honesty, we should admit that a picture can’t tell us certain quantitative
things: for instance, we don’t know the time at which the speed | x| is greatest. Butin
many cases qualitative information is what we care about, and then pictures are fine.

2.2 Fixed Points and Stability

The ideas developed in the last section can be extended to any one-dimensional
system x = f(x). We just need to draw the graph of f(x) and then use it to sketch
the vector field on the real line (the x-axis in Figure 2.2.1).

x

f(x)

Figure 2.2.1
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As before, we imagine that a fluid is flowing along the real line with a local veloc-
ity f(x). This imaginary fluid is called the phase fluid, and the real line is the
phase space. The flow is to the right where f(x) > 0 and to the left where f (x)<0.
To find the solution to x = f(x) starting from an arbitrary initial condition x,, we
place an imaginary particle (known as a phase point) at x, and watch how it is car-
ried along by the flow. As time goes on, the phase point moves along the x-axis
according to some function x(¢) . This function is called the frajectory based at x,,
and it represents the solution of the differential equation starting from the initial
condition x,. A picture like Figure 2.2.1, which shows all the qualitatively differ-
ent trajectories of the system, is called a phase portrait.

The appearance of the phase portrait is controlled by the fixed points x *, de-
fined by f(x*)=0; they correspond to stagnation points of the flow. In Figure
2.2.1, the solid black dot is a stable fixed point (the local flow is toward it) and the
open dot is an unstable fixed point (the flow is away from it).

In terms of the original differential equation, fixed points represent equilib-
rium solutions (sometimes called steady, constant, or rest solutions, since if
x =x* initially, then x(z) = x * for all time). An equilibrium is defined to be sta-
ble if all sufficiently small disturbances away from it damp out in time. Thus sta-
ble equilibria are represented geometrically by stable fixed points. Conversely,
unstable equilibria, in which disturbances grow in time, are represented by unsta-
ble fixed points.

EXAMPLE 2.2.1:

Find all fixed points for x = x> — 1, and classify their stability.

Solution: Here f(x)=x*>—1. To find the fixed points, we set f(x*)=0 and
solve for x *. Thus x* = +1. To determine stability, we plot x* —1 and then sketch
the vector field (Figure 2.2.2). The flow is to the right where x* —1>0 and to the
left where x* —1< 0. Thus x* = —1 is stable, and x* =1 is unstable. m

fx)=x2-1

Figure 2.2.2
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Note that the definition of stable equilibrium is based on small disturbances;
certain large disturbances may fail to decay. In Example 2.2.1, all small distur-
bances to x* = —1 will decay, but a large disturbance that sends x to the right of
x =1 will not decay—in fact, the phase point will be repelled out to +e. To em-
phasize this aspect of stability, we sometimes say that x* = —1 is locally stable, but
not globally stable.

EXAMPLE 2.2.2:

Consider the electrical circuit shown in Figure 2.2.3. A resistor R and a capaci-
tor C are in series with a battery of constant dc voltage V,. Suppose that the switch
is closed at ¢ = 0, and that there is no charge on the capacitor initially. Let Q(¢) de-

] note the charge on the capacitor at time
R t =2 0. Sketch the graph of Q(z).
AN 0. Sketeh e graph of 00,
R olution: This type of circuit problem

is probably familiar to you. It is governed
by linear equations and can be solved an-
alytically, but we prefer to illustrate the
geometric approach.

First we write the circuit equations. As
we go around the circuit, the total voltage
= drop must equal zero; hence -V, +
Figure 2.2.3 RI+Q/C=0, where I is the current
flowing through the resistor. This current causes charge to accumulate on the ca-
pacitor at a rate Q = I . Hence

-V, +RQ+Q/C=0 or

- W 0
Q=70 = R RC
The graph of f(Q) is a straight line with a negative slope (Figure 2.2.4). The
corresponding vector field has a fixed point where f(Q)=0, which occurs at
Q*=CV,. The flow is to the right where

0 £(Q)>0 and to the left where f(Q)<0.
Thus the flow is always toward Q *—itis a

@
7 \ stable fixed point. In fact, it is globally sta-

ble, in the sense that it is approached from
Q  allinitial conditions.

o* To sketch Q(r), we start a phase point at
the origin of Figure 2.2.4 and imagine how
it would move. The flow carries the phase
point monotonically toward Q*. Its speed

Figure 2.2.4
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O decreases linearly as it approaches the fixed point; therefore Q(#) is increasing
and concave down, as shown in Figure 2.2.5. m

Q
EXAMPLE 2.2.3:

Sketch the phase portrait corre-
sponding to x=x-—cosx, and deter-
mine the stability of all the fixed points.

Solution: One approach would be to
plot the function f(x)=x-cosx and
I then sketch the associated vector field.
Figure 2.2.5 This method is valid, but it requires you
to figure out what the graph of

Vol — — — — — — — — — —

x —cos x looks like.

There’s an easier solution, which exploits the fact that we know how to graph
y=x and y=cosx separately. We plot both graphs on the same axes and then
observe that they intersect in exactly one point (Figure 2.2.6).

y==x

N 7 :
NS N

A
Y

Figure 2.2.6

This intersection corresponds to a fixed point, since x*=cosx* and therefore
f(x*)=0. Moreover, when the line lies above the cosine curve, we have x > cosx
and so x > 0: the flow is to the right. Similarly, the flow is to the left where the line is
below the cosine curve. Hence x * is the only fixed point, and it is unstable. Note that
we can classify the stability of x *, even though we don’t have a formula for x * it-
self! m

2.3 Population Growth

The simplest model for the growth of a population of organisms is N =rN,
where N(t) is the population at time 7, and r > 0 is the growth rate. This model
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Growth rate predicts exponential growth:
N(1)= Nye", where N, is the
population at t =0.

Of course such exponential
growth cannot go on forever.
To model the effects of over-
K N crowding and limited resources,

population biologists and de-

mographers often assume that

the per capita growth rate N / N

decreases when N becomes sufficiently large, as shown in Figure 2.3.1. For

small N, the growth rate equals r, just as before. However, for populations larger

than a certain carrying capacity

Growth rate K, the growth rate actually be-

comes negative; the death rate is
higher than the birth rate.

A mathematically convenient
way to incorporate these ideas is
to assume that the per capita

1\]\7 growth rate N/N decreases lin-
early with N (Figure 2.3.2).
This leads to the logistic equation

N:rN(l—E)
K

first suggested to describe the growth of human populations by Verhulst in 1838.
This equation can be solved analytically (Exercise 2.3.1) but once again we prefer a
graphical approach. We plot N versus N to see what the vector field looks like.
Note that we plot only N = 0, since it makes no sense to think about a negative pop-
ulation (Figure 2.3.3). Fixed points occur at N*=0 and N* = K, as found by set-
ting N=0 and solving for N. By looking at the flow in Figure 2.3.3, we see that
N*=0 is an unstable fixed point and N* = K is a stable fixed point. In biological
terms, N =0 is an unstable equilibrium: a small population will grow exponen-
tially fast and run away from N =0 . On the other hand, if N is disturbed slightly
from K, the disturbance will decay monotonically and N(#) — K as t — oo.

In fact, Figure 2.3.3 shows that if we start a phase point at any N, > 0, it will al-
ways flow toward N = K. Hence the population always approaches the carrying

r

Figure 2.3.1

r

Figure 2.3.2

capacity.
The only exception is if N, = 0; then there’s nobody around to start reproducing,
and so N =0 for all time. (The model does not allow for spontaneous generation!)
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K/2 K

Figure 2.3.3

Figure 2.3.3 also allows us to deduce the qualitative shape of the solutions. For
example, if N, < K/2, the phase point moves faster and faster until it crosses
N = K/2, where the parabola in Figure 2.3.3 reaches its maximum. Then the phase
point slows down and eventually creeps toward N = K. In biological terms, this
means that the population initially grows in an accelerating fashion, and the graph
of N(#) is concave up. But after N = K/2, the derivative N begins to decrease,
and so N(t) is concave down as it asymptotes to the horizontal line N = K (Figure
2.3.4). Thus the graph of N(¢) is S-shaped or sigmoid for N, < K/2.

N

s

K/2 A

Figure 2.3.4

Something qualitatively different occurs if the initial condition N, lies between
K/2 and K; now the solutions are decelerating from the start. Hence these solu-
tions are concave down for all ¢, If the population initially exceeds the carrying ca-
pacity (N, > K ), then N(#) decreases toward N = K and is concave up. Finally, if
N, =0 or N, = K, then the population stays constant.

Critique of the Logistic Model
Before leaving this example, we should make a few comments about the biological
validity of the logistic equation. The algebraic form of the model is not to be taken lit-
erally. The model should really be regarded as a metaphor for populations that have a
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tendency to grow from zero population up to some carrying capacity K.

Originally a much stricter interpretation was proposed, and the model was ar-
gued to be a universal law of growth (Pearl 1927). The logistic equation was tested
in laboratory experiments in which colonies of bacteria, yeast, or other simple or-
ganisms were grown in conditions of constant climate, food supply, and absence of
predators. For a good review of this literature, see Krebs (1972, pp. 190-200).
These experiments often yielded sigmoid growth curves, in some cases with an im-
pressive match to the logistic predictions.

On the other hand, the agreement was much worse for fruit flies, flour beetles,
and other organisms that have complex life cycles, involving eggs, larvae, pupae,
and adults. In these organisms, the predicted asymptotic approach to a steady car-
rying capacity was never observed—instead the populations exhibited large, per-
sistent fluctuations after an initial period of logistic growth. See Krebs (1972) for a
discussion of the possible causes of these fluctuations, including age structure and
time-delayed effects of overcrowding in the population.

For further reading on population biology, see Pielou (1969) or May (1981).
Edelstein—Keshet (1988) and Murray (1989) are excellent textbooks on mathemat-
ical biology in general.

2.4 Linear Stability Analysis

So far we have relied on graphical methods to determine the stability of fixed
points. Frequently one would like to have a more quantitative measure of stability,
such as the rate of decay to a stable fixed point. This sort of information may be
obtained by linearizing about a fixed point, as we now explain.

Let x* be a fixed point, and let 77(r) = x(#) — x * be a small perturbation away
from x *. To see whether the perturbation grows or decays, we derive a differential
equation for 77. Differentiation yields

n=4x-x*=1x

since x * is constant. Thus = x = f(x) = f(x*+ 1). Now using Taylor’s expan-
sion we obtain

fx*+ )= fF*) +nf (x*)+00r°),

where O(17°) denotes quadratically small terms in 77 . Finally, note that f(x*)=0
since x * is a fixed point. Hence

n=nf'(x¥)+00").

Now if f'(x*)#0, the O(n*) terms are negligible and we may write the approxi-
mation
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n=nf'(x*).

This is a linear equation in 77, and is called the linearization about x* . It shows
that the perturbation 1(t) grows exponentially if f'(x¥)>0 and decays if
fi(x*)<0. If f’(x¥)=0, the O(n*) terms are not negligible and a nonlinear
analysis is needed to determine stability, as discussed in Example 2.4.3 below.

The upshot is that the slope f’(x*) at the fixed point determines its stability. If
you look back at the earlier examples, you’ll see that the slope was always nega-
tive at a stable fixed point. The importance of the sign of f’(x*) was clear from
our graphical approach; the new feature is that now we have a measure of how sta-
ble a fixed point is—that’s determined by the magnitude of f’(x*). This magni-
tude plays the role of an exponential growth or decay rate. Its reciprocal 1/|f"(x*)|
is a characteristic time scale; it determines the time required for x(z) to vary sig-
nificantly in the neighborhood of x *.

EXAMPLE 2.4.1:

Using linear stability analysis, determine the stability of the fixed points for
X =sinx.

Solution: The fixed points occur where f(x)=sinx =0. Thus x* =kx , where
k is an integer. Then

1, k even

(x¥) = k =
J'x%) = coskm {—1, k odd.

Hence x * is unstable if &k is even and stable if k is odd. This agrees with the re-
sults shown in Figure 2.1.1. m

EXAMPLE 2.4.2:

Classify the fixed points of the logistic equation, using linear stability analysis,
and find the characteristic time scale in each case.

Solution: Here f(N)=rN(1-4), with fixed points N¥=0 and N* = K. Then
S (N)y=r—2 and so f'(0)=+ and f'(K)=—r. Hence N*=0 is unstable and
N*=K is stable, as found earlier by graphical arguments. In either case, the char-
acteristic time scale is 1/|f(N*)|=1/r .=

EXAMPLE 2.4.3:

What can be said about the stability of a fixed point when f’(x*)=0?

Solution: Nothing can be said in general. The stability is best determined on a
case-by-case basis, using graphical methods. Consider the following examples:

@x=—x  ®i=x (c) x=x> @ x=0

2.4 LINEAR STABILITY ANALYSIS 25



Each of these systems has a fixed point x* =0 with f’(x*)=0. However the sta-
bility is different in each case. Figure 2.4.1 shows that (a) is stable and (b) is unsta-
ble. Case (c) is a hybrid case we’ll call half-stable, since the fixed point is
attracting from the left and repelling from the right. We therefore indicate this type
of fixed point by a half-filled circle. Case (d) is a whole line of fixed points; pertur-
bations neither grow nor decay.

5 @ i )
X X
% © i @

Figure 2.4.1

These examples may seem artificial, but we will see that they arise naturally in the
context of bifurcations—more about that later. m

2.5 Existence and Uniqueness

Our treatment of vector fields has been very informal. In particular, we have taken
a cavalier attitude toward questions of existence and uniqueness of solutions to

26 FLOWS ON THE LINE



5

LINEAR SYSTEMS

5.0 Introduction

As we’ve seen, in one-dimensional phase spaces the flow is extremely confined—
all trajectories are forced to move monotonically or remain constant. In higher-
dimensional phase spaces, trajectories have much more room to maneuver, and so
a wider range of dynamical behavior becomes possible. Rather than attack all this
complexity at once, we begin with the simplest class of higher-dimensional sys-
tems, namely linear systems in two dimensions. These systems are interesting in
their own right, and, as we’ll see later, they also play an important role in the clas-
sification of fixed points of nonlinear systems. We begin with some definitions
and examples.

5.1 Definitions and Examples

A two-dimensional linear system is a system of the form
xX=ax+by
y=cx+dy

where a, b, ¢, d are parameters. If we use boldface to denote vectors, this system

can be written more compactly in matrix form as
X = AX

’

where
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Such a system is linear in the sense that if x, and x, are solutions, then so is any
linear combination ¢;X, +¢,X,. Notice that x=0 when x=0, so x*=0 1is al-
ways a fixed point for any choice of A . 4

The solutions of x = Ax can be visualized as trajectories moving on the (x, y)
plane, in this context called the phase plane. Our first example presents the phase
plane analysis of a familiar system.

EXAMPLE 5.1.1:

As discussed in elementary physics courses, the vibrations of a mass hanging
from a linear spring are governed by the linear differential equation

mi+kx=0 )

where m is the mass, k is the spring constant, and x is the displacement of the

mass from equilibrium (Figure 5.1.1). Give a phase plane analysis of this simple

harmonic oscillator.

\ Solution: As you probably recall, it’s easy to solve (1) ana-
Iytically in terms of sines and cosines. But that’s precisely what
makes linear equations so special! For the nonlinear equations

k of ultimate interest to us, it’s usually impossible to find an ana-
lytical solution. We want to develop methods for deducing the
behavior of equations like (1) without actually solving them.

The motion in the phase plane is determined by a vector

X field that comes from the differential equation (1). To find
this vector field, we note that the state of the system is char-
acterized by its current position x and velocity v; if we know
the values of both x and v, then (1) uniquely determines the
future states of the system. Therefore we rewrite (1) in terms of x and v, as fol-
lows:

Figure 5.1.1

x=v (2a)
\):—%x, (Zb)

Equation (2a) is just the definition of velocity, and (2b) is the differential equation
(1) rewritten in terms of v. To simplify the notation, let @” = k/m . Then (2) be-
comes

xX=v 3a)
v=—w’x. (3b)

The system (3) assigns a vector (X, V)= (v,—@’x) at each point (x,v), and there-
fore represents a vector field on the phase plane. -»F
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For example, let’s see what the vector field looks like when we’re on the x-axis.
Then v =0 and so (x,v) = (0,—@"x) . Hence the vectors point vertically downward
for positive x and vertically upward for negative x .(Figure 5.1.2). As x gets
larger in magnitude, the vectors (0,—@>x) get longer. Similarly, on the v-axis, the
vector field is (x,v) = (v,0), which points to the right when v >0 and to the left
when v < 0. As we move around in phase space, the vectors change direction as
shown in Figure 5.1.2.

Just as in Chapter 2, it is helpful to
visualize the vector field in terms of the
el motion of an imaginary fluid. In the
\ present case, we imagine that a fluid is
4 Bt ~ flowing steadily on the phase plane
~ 1 l x Wwith a local velocity given by

(x,v) = (v,—®"°x). Then, to find the tra-

L jectory starting at (x,, v,), we place an
imaginary particle or phase point at

(x4, vy) and watch how it is carried

Figure 5.1.2 around by the flow.

The flow in Figure 5.1.2 swirls about
the origin. The origin is special, like the eye of a hurricane: a phase point placed
there would remain motionless, because (x,v)=(0,0) when (x,v)=(0,0); hence
the origin is a fixed point. But a phase point starting anywhere else would circulate
around the origin and eventually return
to its starting point. Such trajectories

\%
' - form closed orbits, as shown in Figure
5.1.3. Figure 5.1.3 is called the phase
/; \\ portrait of the system—it shows the

overall picture of trajectories in phase

\ X space.
What do fixed points and closed or-
bits have to do with the original prob-

lem of a mass on a spring? The answers
are beautifully simple. The fixed point
(x,v)=(0,0) corresponds to static
equilibrium of the system: the mass is at rest at its equilibrium position and will
remain there forever, since the spring is relaxed. The closed orbits have a more in-
teresting interpretation: they correspond to periodic motions, i.e., oscillations of
the mass. To see this, just look at some points on a closed orbit (Figure 5.1.4).
When the displacement x is most negative, the velocity v is zero; this corre-
sponds to one extreme of the oscillation, where the spring is most compressed
(Figure 5.1.4). S

Figure 5.1.3

5.1 DEFINITIONS AND EXAMPLES 125



(a) (b) (c) (d)

Figure 5.1.4

In the next instant as the phase point flows along the orbit, it is carried to points
where x has increased and v is now positive; the mass is being pushed back to-
ward its equilibrium position. But by the time the mass has reached x =0, it has a
large positive velocity (Figure 5.1.4b) and so it overshoots x =0 . The mass even-
tually comes to rest at the other end of its swing, where x is most positive and v is
zero again (Figure 5.1.4c). Then the mass gets pulled up again and eventually com-
pletes the cycle (Figure 5.1.4d).

The shape of the closed orbits also has an interesting physical interpretation. The
orbits in Figures 5.1.3 and 5.1.4 are actually ellipses given by the equation
®*x* +v? = C, where C 20 is a constant. In Exercise 5.1.1, you are asked to derive
this geometric result, and to show that it is equivalent to conservation of energy. m

EXAMPLE 5.1.2:

a 0
Solve the linear system X = Ax, where A = (O J. Graph the phase portrait

126 LINEAR SYSTEMS



as a varies from —oo to 4o, showing the qualitatively different cases.
Solution: The system is

X a 0Yx
v) o —thy)
Matrix multiplication yields
X =ax
y=-y
which shows that the two equations are uncoupled; there’s no x in the y-equation

and vice versa. In this simple case, each equation may be solved separately. The
solution is

x(t) = x,e” (la)
y(t)=yee . (I1b)

The phase portraits for different values of @ are shown in Figure 5.1.5. In each
case, y(t) decays exponentially. When a < 0, x(¢) also decays exponentially and so
all trajectories approach the origin as ¢ — . However, the direction of approach
depends on the size of a compared to —1.

@) a<-1 b) a =-1 (¢) -1<ax<0

A
W

(d) a=0 (&) a>0

Figure 5.1.5
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In Figure 5.1.5a, we have a < —1, which implies that x(¢) decays more rapidly
than y(¢). The trajectories approach the origin tangent to the slower direction
(here, the y-direction). The intuitive explanation is that when a is very negative,
the trajectory slams horizontally onto the y-axis, because the decay of x(¢) is al-
most instantaneous. Then the trajectory dawdles along the y-axis toward the ori-
gin, and so the approach is tangent to the y-axis. On the other hand, if we look
backwards along a trajectory (¢t — —eo), then the trajectories all become parallel to
the faster decaying direction (here, the x-direction). These conclusions are easily
proved by looking at the slope dy/dx = y/x along the trajectories; see Exercise
5.1.2. In Figure 5.1.5a, the fixed point x* = 0 is called a stable node.

Figure 5.1.5b shows the case a = —1. Equation (1) shows that y(1)/x(t) = y,/x,=
constant, and so all trajectories are straight lines through the origin. This is a very
special case—it occurs because the decay rates in the two directions are precisely
equal. In this case, x * is called a symmetrical node or star.

When —1<a <0, we again have a node, but now the trajectories approach x *
along the x-direction, which is the more slowly decaying direction for this range of
a (Figure 5.1.5¢).

Something dramatic happens when a =0 (Figure 5.1.5d). Now (la) becomes
x(¢) = x, and so there’s an entire line of fixed points along the x-axis. All trajecto-
ries approach these fixed points along vertical lines.

Finally when a > 0 (Figure 5.1.5¢), X * becomes unstable, due to the exponen-
tial growth in the x-direction. Most trajectories veer away from x * and head out to
infinity. An exception occurs if the trajectory starts on the y-axis; then it walks a
tightrope to the origin. In forward time, the trajectories are asymptotic to the x-
axis; in backward time, to the y-axis. Here x* =0 is called a saddle point. The
y-axis is called the stable manifold of the saddle point x *, defined as the set of
initial conditions x, such that x(t) — x* as t — oo . Likewise, the unstable mani-
Jold of x* is the set of initial conditions such that x(¢) - x * as t — —o . Here the
unstable manifold is the x-axis. Note that a typical trajectory asymptotically ap-
proaches the unstable manifold as 1 — ¢, and approaches the stable manifold as
t — —co, This sounds backwards, but it’s right! m

Stability Language

It’s useful to introduce some language that allows us to discuss the stability of
different types of fixed points. This language will be especially useful when we an-
alyze fixed points of nonlinear systems. For now we’ll be informal; precise defini-
tions of the different types of stability will be given in Exercise 5.1.10.

We say that x* = 0 is an attracting fixed point in Figures 5.1.5a—c; all trajectories
that start near x * approach it as  — oo . That is, X(f) » x* as t — co. In fact x *
attracts all trajectories in the phase plane, so it could be called globally attracting.

There’s a completely different notion of stability which relates to the behavior
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of trajectories for all time, not just as t — o . We say that a fixed point x * is Lia-
punov stable if all trajectories that start sufficiently close to x * remain close to it
for all time. In Figures 5.1.5a—d, the origin is Liapunov stable.

Figure 5.1.5d shows that a fixed point can be Liapunov stable but not attracting.
This situation comes up often enough that there is a special name for it. When a
fixed point is Liapunov stable but not attracting, it is called neutrally stable.
Nearby trajectories are neither attracted to nor repelled from a neutrally stable
point. As a second example, the equilibrium point of the simple harmonic oscilla-
tor (Figure 5.1.3) is neutrally stable. Neutral stability is commonly encountered in
mechanical systems in the absence of friction. Conversely, it’s possible for a fixed
point to be attracting but not Liapunov stable; thus, neither notion of stability im-
plies the other. An example is given by the following vector field on the circle:
=1-cosb (Figure 5.1.6). Here 6* = 0 attracts all trajectories as t — oo, but it is
not Liapunov stable; there are trajectories that start infini-
tesimally close to 8 * but go on'a very large excursion be-
fore returning to 6 *.

However, in practice the two types of stability often oc-
cur together. If a fixed point is both Liapunov stable and at-
tracting, we’ll call it stable, or sometimes asymptotically
stable.

Finally, x* is unstable in Figure 5.1.5¢, because it is
neither attracting nor Liapunov stable.

A graphical convention: we’ll use open dots to denote unstable fixed points, and
solid black dots to denote Liapunov stable fixed points. This convention is consis-
tent with that used in previous chapters.

Figure 5.1.6

5.2 Classification of Linear Systems

The examples in the last section had the special feature that two of the entries in
the matrix A were zero. Now we want to study the general case of an arbitrary
2 X2 matrix, with the aim of classifying all the possible phase portraits that can
occur.

Example 5.1.2 provides a clue about how to proceed. Recall that the x and y
axes played a crucial geometric role. They determined the direction of the trajecto-
ries as t — *eo . They also contained special straight-line trajectories: a trajectory
starting on one of the coordinate axes stayed on that axis forever, and exhibited
simple exponential growth or decay along it.

For the general case, we would like to find the analog of these straight-line tra-
jectories. That is, we seek trajectories of the form

x(1) = ev, )

5.2 CLASSIFICATION OF LINEAR SYSTEMS 129



where v # 0 is some fixed vector to be determined, and A is a growth rate, also to
be determined. If such solutions exist, they correspond to exponential motion
along the line spanned by the vector v. 4

To find the conditions on v and 1, we substitute x(f) = e*v into x = Ax, and
obtain Ae*v = e*Av . Canceling the nonzero scalar factor e” yields

Av=A4v, 3)

which says that the desired straight line solutions exist if v is an eigenvector of A
with corresponding eigenvalue A . In this case we call the solution (2) an eigen-
solution.

Let’s recall how to find eigenvalues and eigenvectors. (If your memory needs
more refreshing, see any text on linear algebra.) In general, the eigenvalues of a
matrix A are given by the characteristic equation det(A— AI) =0, where [ is the
identity matrix. For a 2 X 2 matrix

(a b)
A= ,
c d

the characteristic equation becomes

dta—ft b 0
e =0.
c d—24

Expanding the determinant yields
X -1A+A=0 )
where

T=trace(A)=a+d,
A=det(A)=ad-bc.

Then
T+NT —4A T—~T* —4A
p=t s, h =R )

are the solutions of the quadratic equation (4). In other words, the eigenvalues de-
pend only on the trace and determinant of the matrix A .

The typical situation is for the eigenvalues to be distinct: A, # A, . In this case, a
theorem of linear algebra states that the corresponding eigenvectors v, and v, are
linearly independent, and hence span the entire plane (Figure 5.2.1). In particular,
any initial condition X, can be written as a linear combination of eigenvectors, say
X, =V, +0,v,.
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Xg =V + Vo

SAL) /

V1

Figure 5.2.1

This observation allows us to write down the general solution for x(¢) —it is simply
x(t) = c,eM'v, +c,e'v, . )

Why is this the general solution? First of all, it is a linear combination of solu-
tions to X = Ax, and hence is itself a solution. Second, it satisfies the initial condi-
tion x(0)=x,, and so by the existence and uniqueness theorem, it is the only
solution. (See Section 6.2 for a general statement of the existence and uniqueness
theorem.)

EXAMPLE 5.2.1:

Solve the initial value problem x =x+y, y=4x—2y, subject to the initial
condition (x,,y,) =(2,-3).
Solution: The corresponding matrix equation is

X 1 1Yx

v) 4 2\y)
First we find the eigenvalues of the matrix A . The matrix has 7=-1 and A=-6,
so the characteristic equation is A*+ 4 —6 =0 . Hence

A =2, A,=-3.

Next we find the eigenvectors. Given an eigenvalue A, the corresponding
eigenvector v = (v,,v,) satisfies

S

-1 1Yv 0
For A, =2, this yields (4 4]( 1)=[Oj, which has a nontrivial solution

v,
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(v,,v,)=(1,1), or any scalar multiple thereof. (Of course, any multiple of an eigen-

vector is always an eigenvector; we try to pick the simplest multiple, but any one will

4 1Yv 0
do.) Similarly, for A, = =3, the eigenvector equation becomes (4 1]( ]]: (0]
V)

which has a nontrivial solution (v,,v,) = (1,—4) . In summary,

ol oLl

Next we write the general solution as a linear combination of eigensolutions.
From (6), the general solution is

1 21 1 -3t
X(t) =¢, le +c, 4 e . 7)

Finally, we compute ¢, and ¢, to satisfy the initial condition (x,,y,) =(2,-3). At

t =0, (7) becomes

(2)<(0)=(4)

which is equivalent to the algebraic system

2=¢ +c,,

—3=c¢,—4c,.
The solutionis ¢, =1, ¢, =1. Substituting back into (7) yields

x()=e* +e,
y(t)=e —de™

for the solution to the initial value problem. »

Whew! Fortunately we don’t need to go through all this to draw the phase por-
trait of a linear system. All we need to know are the eigenvectors and eigenvalues.

EXAMPLE 5.2.2:

Draw the phase portrait for the system of Example 5.2.1.

Solution: The system has eigenvalues 1, =2, A, =3 . Hence the first eigenso-
lution grows exponentially, and the second eigensolution decays. This means. the
origin is a saddle point. Its stable manifold is the line spanned by the eigenvector

. v, =(1,-4), corresponding to the decaying eigensolution. Similarly, the unstable
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manifold is the line spanned by v, = (1,1) . As with all saddle points, a typical tra-
jectory approaches the unstable manifold as # — oo, and the stable manifold as
t — —oo . Figure 5.2.2 shows the phase portrait. m- -

y

Figure 5.2.2

EXAMPLE 5.2.3:

Sketch a typical phase portrait for the case A, <4, <0.
Solution: First suppose A, <A, <0. Then both eigensolutions decay exponen-
tially. The fixed point is a stable

slow eigendirection

y

node, as in Figures 5.1.5a and 5.1.5c¢,
except now the eigenvectors are not
mutually perpendicular, in general.

= Trajectories typically approach the
\\ origin tangent to the slow eigendirec-

fion, defined as the direction spanned
by the eigenvector with the smaller
fast eigendirection |4]. In backwards time (z — —o ), the

trajectories become parallel to the

Figure 5.2.3
fast eigendirection. Figure 5.2.3

shows the phase portrait. (If we reverse all the arrows in Figure 5.2.3, we obtain a
typical phase portrait for an unstable node.) m

EXAMPLE 5.2.4:

What happens if the eigenvalues are complex numbers?
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Solution: If the eigenvalues are complex, the fixed point is either a center (Fig-
ure 5.2.4a) or a spiral (Figure 5.2.4b). We’ve already seen an example of a center
in the simple harmonic oscilla-

tor of Section 5.1; the origin is

surrounded by a family of

. closed orbits. Note that centers

are neutrally stable, since

nearby trajectories are neither

attracted to nor repelled from

(2) center (b) spiral the flx.ed point. A splral x'vould
occur if the harmonic oscillator
Figure 5.2.4 were lightly damped. Then the

trajectory would just fail to
close, because the oscillator loses a bit of energy on each cycle.
To justify these statements, recall that the eigenvalues are 4, = 4 (T +~72 —4A )
Thus complex eigenvalues occur when

2 —4A <0.

To simplify the notation, let’s write the eigenvalues as
A,=0tio

where
a=1/2, w=i4A-1".

By assumption, @ # 0. Then the eigenvalues are distinct and so the general solu-
tion is still given by

x(t) = c,e™'v, +c,e™

v, .
But now the ¢’s and v’s are complex, since the A’s are. This means that x(¢) in-
volves linear combinations of ¢***”. By Euler’s formula, ¢’ = cost +isin ax.
Hence x(t) is a combination of terms involving e” cosax and e* sinax. Such
terms represent exponentially decaying oscillations if o =Re(1) <0 and growing
oscillations if o > 0. The corresponding fixed points are stable and unstable spi-
rals, respectively. Figure 5.2.4b shows the stable case.

If the eigenvalues are pure imaginary (¢ = 0), then all the solutions are periodic
with period T = 27/®@. The oscillations have fixed amplitude and the fixed point is
acenter.

For both centers and spirals, it’s easy to determine whether the rotation is clock-
wise or counterclockwise; just compute a few vectors in the vector field and the
sense of rotation should be obvious. m

i
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EXAMPLE 5.2.5:

In our analysis of the general case, we have been assuming that the eigenvalues
are distinct. What happens if the eigenvalues are equal?

Solution: Suppose A, = A, = A. There are two possibilities: either there are two
independent eigenvectors corresponding to A, or there’s only one.

If there are two independent eigenvectors, then they span the plane and so
every vector is an eigenvector with this same eigenvalue A. To see this, write
an arbitrary vector X, as a linear combination of the two eigenvectors:
X, =V, +c,v,. Then

Ax, = A(c\ v, +¢,v,) = v, + c,Av, = Ax,

$O X, is also an eigenvector with eigenvalue A. Since multiplication by A sim-
ply stretches every vector by a factor A, the matrix must be a multiple of the

identity:
A0
A= .
0 A

Then if A =0, all trajectories are straight lines through the origin (x(#) = et X,)
and the fixed point is a star node (Figure 5.2.5).

Figure 5.2.5
On the other hand, if A =0, the whole plane is filled with fixed points! (No sur-
prise—the system is x =0.)
The other possibility is that there’s only one eigenvector (more accurately, the
eigenspace corresponding to A is one-dimensional.) For example, any matrix of
the form A = 0 Z] with b# 0 has only a one-dimensional eigenspace (Exer-

cise 5.2.11).
When there’s only one eigendirection, the fixed point is a degenerate node. A
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typical phase portrait 1is
shown in Figure 5.2.6. As
t —> 4+ and also as t > —oo,
eigendirection  all trajectories become paral-
lel to the one available
eigendirection.
A good way to think about
the degenerate node is to
imagine that it has been cre-
Figure 5.2.6 ated by deforming an ordi-

nary node. The ordinary node
has two independent eigendirections; all trajectories are parallel to the slow
eigendirection as t — oo, and to the fast eigendirection as r — —oo (Figure 5.2.7a).

fast

slow

(a) node (b) degenerate node

Figure 5.2.7

Now suppose we start changing the parameters of the system in such a way that the
two eigendirections are scissored together. Then some of the trajectories will get
squashed in the collapsing region between the two eigendirections, while the sur-
viving trajectories get pulled around to form the degenerate node (Figure 5.2.7b).

Another way to get intuition about this case is to realize that the degenerate
node is on the borderline between a spiral and a node. The trajectories are trying
to wind around in a spiral, but they don’t quite make it. m

Classification of Fixed Points

By now you’re probably tired of all the examples and ready for a simple classi-
fication scheme. Happily, there is one. We can show the type and stability of all the
different fixed points on a single diagram (Figure 5.2.8).
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' unstable nodes ©__

unstable spirals

saddle points

non-isolated
fixed points

stars, degenerate nodes
Figure 5.2.8

The axes are the trace T and the determinant A of the matrix A. All of the infor-
mation in the diagram is implied by the following formulas:

l],zz%(TiM), Azﬂ“lﬂ“z’ T=2’1+2’2’

The first equation is just (5). The second and third can be obtained by writing the
characteristic equation in the form (A—1,)(A-A,)= A —tA+A =0.

To arrive at Figure 5.2.8, we make the following observations:

If A <0, the eigenvalues are real and have opposite signs; hence the fixed point
is a saddle point.

If A> 0, the eigenvalues are either real with the same sign (nodes), or complex
conjugate (spirals and centers). Nodes satisfy 77 —4A >0 and spirals satisfy
7> —=4A < 0. The parabola > ~4A =0 is the borderline between nodes and spi-
rals; star nodes and degenerate nodes live on this parabola. The stability of the
nodes and spirals is determined by 7. When 7 < 0, both eigenvalues have negative
real parts, so the fixed point is stable. Unstable spirals and nodes have 7 > 0. Neu-
trally stable centers live on the borderline 7 =0, where the eigenvalues are purely
imaginary.

If A=0, at least one of the eigenvalues is zero. Then the origin is not an iso-
lated fixed point. There is either a whole line of fixed points, as in Figure 5.1.5d, or
a plane of fixed points,if A=0.

Figure 5.2.8 shows that saddle points, nodes, and spirals are the major types of
fixed points; they occur in large open regions of the (A,7) plane. Centers, stars,
degenerate nodes, and non-isolated fixed points are borderline cases that occur
along curves in the (A,7) plane. Of these borderline cases, centers are by far the
most important. They occur very commonly in frictionless mechanical systems
where energy is conserved.
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EXAMPLE 5.2.6:

1 2

Classify the fixed point x* =0 for the system x = Ax, where A = (3 4] .
Solution: The matrix has A =-2; hence the fixed point is a

saddle point. m

EXAMPLE 5.2.7:

2 1
Redo Example 5.2.6 for A = (3 4).

Solution: Now A=5 and 7=6. Since A>0 and 7° —4A =16 >0, the fixed
point is a node. It is unstable, since 7>0. =

5.3 Love Affairs

To arouse your interest in the classification of linear systems, we now discuss a
simple model for the dynamics of love affairs (Strogatz 1988). The following story
illustrates the idea.

Romeo is in love with Juliet, but in our version of this story, Juliet is a fickle
lover. The more Romeo loves her, the more Juliet wants to run away and hide. But
when Romeo gets discouraged and backs off, Juliet begins to find him strangely at-
tractive. Romeo, on the other hand, tends to echo her: he warms up when she loves
him, and grows cold when she hates him.

Let

R(r) = Romeo’s love/hate for Juliet at time ¢
J(r) =Juliet’s love/hate for Romeo at time 7.

Positive values of R, J signify love, negative values signify hate. Then a model
for their star-crossed romance is

R=al
J=-bR
where the parameters a and b are positive, to be consistent with the story.
The sad outcome of their affair is, of course, a neverending cycle of love and

hate; the governing system has a center at (R, J) =(0,0). At least they manage to
achieve simultaneous love one-quarter of the time (Figure 5.3.1).
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Now consider the forecast for lovers governed by the general linear system

Figure 5.3.1

R=aR+bJ

J=cR+d]

where the parameters a, b, ¢, d may have either sign. A choice of signs specifies
the romantic styles. As named by one of my students, the choice ¢>0, b>0
means that Romeo is an “eager beaver’—he gets excited by Juliet’s love for him,
and is further spurred on by his own affectionate feelings for her. It’s entertaining
to name the other three romantic styles, and to predict the outcomes for the various
pairings. For example, can a “cautious lover” (a <0, b > 0) find true love with an
eager beaver? These and other pressing questions will be considered in the exer-
cises.

EXAMPLE 5.3.1:
What happens when two identically cautious lovers get together?

Solution: The system is

R=aR+bJ

J=bR+al
with a <0, b>0. Here a is a measure of cautiousness (they each try to avoid
throwing themselves at the other) and b is a measure of responsiveness (they both
get excited by the other’s advances). We might suspect that the outcome depends

on the relative size of g and b. Let’s see what happens.
The corresponding matrix is

(a bj
A=

b a
which has

T=2a<0, A=g*-b?, T2 —4A=4b>0,
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Hence the fixed point (R, J) = (0,0) is a saddle point if a> <»” and a stable node
if a> > b* . The eigenvalues and corresponding eigenvectors are

A=a+b, v,=1L1, A =a-b, v,=(,~1).

Since a+b>a—b, the eigenvector (1,1) spans the unstable manifold when the
origin is a saddle point, and it spans the slow eigendirection when the origin is a
stable node. Figure 5.3.2 shows the phase portrait for the two cases.

Figure 5.3.2

If a® > b2, the relationship always fizzles out to mutual indifference. The lesson
seems to be that excessive caution can lead to apathy.

If a® < b, the lovers are more daring, or perhaps more sensitive to each other.
Now the relationship is explosive. Depending on their feelings initially, their rela-
tionship either becomes a love fest or a war. In either case, all trajectories approach
the line R = J, so their feelings are eventually mutual. m

EXERCISES FOR CHAPTER 5

5.1 Definitions and Examples

5.1.1 (Ellipses and energy conservation for the harmonic oscillator) Consider

the harmonic oscillator x = v, v =—-w’x .

a) Show that the orbits are given by ellipses @°x* +v* = C, where C is any non-
negative constant. (Hint: Divide the x equation by the v equation, separate the
v’s from the x’s, and integrate the resulting separable equation.)

b) Show that this condition is equivalent to conservation of energy.

140 LINEAR SYSTEMS



5.1.2 Consider the system x =ax, y=-y, where a <-1. Show that all trajec-
tories become parallel to the y-direction as t — oo, and parallel to the x-direction
as t — —oo,

(Hint: Examine the slope dy/dx = y/x.)
Write the following systems in matrix form.

51.3 x=-y,y=—x 5.1.4 x=3x-2y,y=2y—x
5.1.5 x=0,y=x+y 51,6 x=x,y=5x+y

Sketch the vector field for the following systems. Indicate the length and direction
of the vectors with reasonable accuracy. Sketch some typical trajectories.

517 x=x,y=x+y 5.1.8 x=-2y,y=x

5.1.9 Consider the system x =—y, y=—x.

a) Sketch the vector field.

b) Show that the trajectories of the system are hyperbolas of the form x> —y*> = C.
(Hint: Show that the governing equations imply xx — yy = 0 and then integrate
both sides.)

c) The origin is a saddle point; find equations for its stable and unstable mani-
folds.

d) The system can be decoupled and solved as follows. Introduce new variables u
and v, where u = x+y, v=x—y. Then rewrite the system in terms of « and v.
Solve for u(t) and v(t), starting from an arbitrary initial condition (i, v,).

e) What are the equations for the stable and unstable manifolds in terms of # and
v?

f) Finally, using the answer to (d), write the general solution for x(z) and y(z),
starting from an initial condition (x,,y,).

5.1.10 (Attracting and Liapunov stable) Here are the official definitions of the
various types of stability. Consider a fixed point x * of a system x = f(x).

We say that x* is aftracting if there is a 8 > 0 such that limx(#) = x * when-
1—yoo

ever || x(0)=~x* || < 8. In other words, any trajectory that starts within a distance &

of x * is guaranteed to converge to X * eventually. As shown schematically in Fig-
ure 1, trajectories that start nearby are allowed to stray from x * in the short run,
but they must approach x * in the long run.

In contrast, Liapunov stability requires that nearby trajectories remain close for
all time. We say that x * is Liapunov stable if for each £ >0, there isa § >0 such
that || x(t)—x *| < & whenever >0 and ||x(0)~x*| < &. Thus, trajectories that
start within § of x * remain within £ of x* for all positive time (Figure 1).
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radius = 6 radius =¢

Attracting Liapunov stable
Figure 1

Finally, x* is asymptotically stable if it is both attracting and Liapunov stable.
For each of the following systems, decide whether the origin is attracting, Lia-
punov stable, asymptotically stable, or none of the above.

a) x=y,y=—4x. b) x=2y,y=x
c) x=0,y=x d) x=0,y=-y
e) x=—-x,y=-5y f)y x=x,y=y

5.1.11 (Stability proofs) Prove that your answers to 5.1.10 are correct, using the
definitions of the different types of stability. (You must produce a suitable & to
prove that the origin is attracting, or a suitable d(¢) to prove Liapunov stability.)

5.1.12 (Closed orbits from symmetry arguments) Give a simple proof that orbits
are closed for the simple harmonic oscillator x = v, v = —x, using only the symme-
try properties of the vector field. (Hint: Consider a trajectory that starts on the v-
axis at (0,—v, ), and suppose that the trajectory intersects the x-axis at (x,0) . Then
use symmetry arguments to find the subsequent intersections with the v-axis and
X-axis.)

5.1.13 Why do you think a “saddle point” is called by that name? What’s the
connection to real saddles (the kind used on horses)?

5.2 Classification of Linear Systems
Consider the system x=4x—y, y=2x+y.
a) Write the system as x = Ax. Show that the characteristic polynomial is
A> —5A+6, and find the eigenvalues and eigenvectors of A.
b) Find the general solution of the system.
c¢) Classify the fixed point at the origin.
d) Solve the system subject to the initial condition (x,,y,) =(3,4).

5.2.2 (Complex eigenvalues) This exercise leads you through the solution of a
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linear system where the eigenvalues are complex. The system is x=x-y,

y=x+y.

a) Find A and show that it has eigenvalues A, =1+1i, 4, =1—1, with eigenvectors
v, =(,1), v, = (=i,1). (Note that the eigenvalues are complex conjugates, and
so are the eigenvectors—this is always the case for real A with complex eigen-
values.)

b) The general solution is x(¢) = clel"vl +czeh’v2. So in one sense we’re done!
But this way of writing x(r) involves complex coefficients and looks unfamil-
iar. Express x(r) purely in terms of real-valued functions. (Hint: Use
e =coswr+isinwr to rewrite x(r) in terms of sines and cosines, and then
separate the terms that have a prefactor of / from those that don’t.)

Plot the phase portrait and classify the fixed point of the following linear systems.
If the eigenvectors are real, indicate them in your sketch.

523 x=y,y=-2x-3y 524 x=5x+10y,y=—x—y
525 x=3x-4y,y=x-y 52.6 x=-3x+2y,y=x-2y
5.27 x=5x+2y,y=—-17x-5y 5.2.8 x=-3x+4y,y=-2x+3y
5.2.9 x=4x—3y,y:8x—6y 5210 x=y,y=-x—-2y.

A b
5.2.11 Show that any matrix of the form A = [0 ], with b # 0, has only a one-

A

dimensional eigenspace corresponding to the eigenvalue A. Then solve the system

x = Ax and sketch the phase portrait.

5.2.12 (LRC circuit) Consider the circuit equation LI+ RI+1/C=0, where

L,C>0and R=0.

a) Rewrite the equation as a two-dimensional linear system.

b) Show that the origin is asymptotically stable if R >0 and neutrally stable if
R=0.

¢) Classify the fixed point at the origin, depending on whether R*C — 4L is posi-
tive, negative, or zero, and sketch the phase portrait in all three cases.

5.2.13 (Damped harmonic oscillator) The motion of a damped harmonic oscilla-

tor is described by mXx + bx + kx =0, where b > 0 is the damping constant.

a) Rewrite the equation as a two-dimensional linear system.

b) Classify the fixed point at the origin and sketch the phase portrait. Be sure to
show all the different cases that can occur, depending on the relative sizes of
the parameters.

¢) How do your results relate to the standard notions of overdamped, critically
damped, and underdamped vibrations?

5.2.14 (A project about random systems) Suppose we pick a linear system at -
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random; what’s the probability that the origin will be, say, an unstable spiral? To

a b
be more specific, consider the system x = Ax, where A =( j Suppose we
¢

pick the entries a,b,c,d independently and at random from a uniform distribution
on the interval [—1,1]. Find the probabilities of all the different kinds of fixed
points.

To check your answers (or if you hit an analytical roadblock), try the Monte
Carlo method. Generate millions of random matrices on the computer and have the
machine count the relative frequency of saddles, unstable spirals, etc.

Are the answers the same if you use a normal distribution instead of a uniform
distribution?

5.3 Love Affairs

-} 5.3.1 (Name-calling) Sdg est names for the four romantic styles, determined
by the signs of a and & in R=aR+blJ.

5.3.2 Consider the affair described by R= J, J=-R+/J.

a) Characterize the romantic styles of Romeo and Juliet.

b) Classify the fixed point at the origin. What does this imply for the affair?
c) Sketch R(¢) and J(¢) as functions of ¢, assuming R(0)=1, J(0)=0.

In each of the following problems, predict the course of the love affair, depending
on the signs and relative sizes of @ and b.

5.3.3 (Out of touch with their own feehngs) Suppose Romeo and Juliet react to
each other, but not to themselves: R = aJ, J = bR. What happens?

> 5.3.4 (Fire and water) Do opposites attract? Analyze R = aR +bJ, J = —bR—aJ. A

5.3.5 (Peas in a pod) If Romeo and Juliet are romantic clones (R=aR+blJ,.

J = bR+ al), should they expect boredom or bliss?

~) 95.3.6 (Romeo the robot) Nothing could ever change the way Romeo feels about

Juhet R=0, J =aR+bJ. Does Juliet end up loving him or hating him?
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