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1. Show that the set of all points on the line y = mx forms a subspace of the vector space R?. Show that the
set U = {(x,y,2) € R%: 2x — 3y + z = 0} is a subspace of the real vector space R3, find a basis of this
subspace.

SOLUTION: 1ST PART:
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2. Define linear dependence and linear independence of a finite set of vectors. Show that if {a;, @3, a3} be a
basis of a vector space V of dimension 3, then {a; + a, + a3, a, + a3, a3} is also a basis of V.
SOLUTION: 1ST PART: See any standard Book.

2ND Part:



Cx (dky F R ey) ¢ G () & 4ty = (0,0,0)

-
. : : G+ Ca\oly 2 (0,0,0
=y ea ¥y ¢ ¢ Gy Yo CAYG Xty oy )._»
ot ks ialy e, WS B o gy Tele LR R
.)ﬂY"k)\ .] 1) ,‘)\S
4 ¥ N, AL SNy
G\ =% C\*CL;C-& G\ ¥ v &y
. e B il (‘5
= g = Z k =
L. T AR
T IR C\LO< Yoy ¥y ) oladeh) ] A& rien
No R\ N Q AkEYS A '\'\,\.Lw/\ui— vy AL Q- WL .\. r \OQM’A
0 N[7) L\Cﬂfﬁk(‘)\tﬂ \I \5«* \0(\’(027_ 1—9{5)0(1 -}o?L)’O{SLj n A
oy V&

e N -
3. If Wiand W, be two subspaces of a vector space V over F, then show that W; + W, is the smallest

subspace of V.
SOLUTION: See Higher Algebra Book by S.K.Mapa Page 119, Theorem 4.3.4 and 4.3.5.

4. Prove that any two bases of a finite dimensional vector space have the same number of vectors. Find a
basis of the vector space R3 containing the vectors (2,1,0) and (1, 1, 2).

SOLUTION: 1ST PART: See Higher Algebra Book by S.K.Mapa Page 135, Theorem 4.5.4.

2ND PART: Required basis is {(2,1,0), (1,1,2), (0,0,1)}.

5. Find a linearly independent subset T of the set S = {a1, ay, a3, az}where ¢y = (1,2,-1), a, =
(=3,-6,3), a3 = (2,1,3), a, = (8,7,7) € R which spans the same space as S.
SOLUTION: See Algebra Book by R.M.Khan Page 639, Example 10.

6. If S is a linearly independent subset of a vector space V (F) and L(S) = V, then prove that no proper subset
of S can span V.
SOLUTION: See Algebra Book by R.M.Khan Page 639, Theorem 3.



