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LECTURE NOTE -5

The matrix method for homogeneous linear systems with constant coefficients: n Equations in n
Unknowns:

Theorem 7.16:

Consider the homogeneous linear system

_dt = 'ﬂllxl —+ alzxz S . ﬂl,,x,,,

% =dy Xy + GypXy + 0+ o Xn, (7.136)

dx,

E =dy X + Hp2Xa + -+ UpunXn»

that is, the vector differential equation

dx
— = Ax, (7.139)
dt
where
dy, dyz d), Xy
a a i X
A = ?l ?2 an x = 2 ,
ty ez 77 Qy, Xn

and the a;;, ({ = 1,2,...,nj = 1,2,...,n), are real constants.
Suppose each of the n characteristic values A,,A,,..., A, of A is distinct; and let
alVa?,... a" be a set of n respective corresponding characteristic vectors of A.
Then on every real interval, the n vector functions defined by

at‘”e““ at’l}eﬂ.z: H{HJE"'"'
Sform a linearly independent set of solutions of (7.136), that is, (7.139); and
x = ¢;aVett 4 cpalFlett + - 4 g aet,

where ¢, Cy,...,C, are n arbitrary constants, is a general solution of (7.130).



Example 1:

Consider the homogeneous linear system

dx

d—:—?xl — X3 +6x3,

% = - 10x; + Ay — 2%, (7.150)
dx

-EI_E; "23':1 + X; — Xy,

that is, the vector differential equation

Ix T -1 6 Xy
=10 4 —12]|x, where x=|x,]| (7.151)
dt

-2 P =1 X3

Assuming a solution of (7.151) of the form

X = ae¥,

that 1s,

x, =a,8” x,=oeY, x3=a,e?

we know that 4 must be a solution of the characteristic equation of the coefficient
matrix

T =1 6
A=|-10 4 12,
—2 1 -1
This characteristic equation is
7—4 -1 6
JA—All=| =10 4—-4 12 |[=0
-2 1 -1-—-4

Expanding the determinant and simplifying, we see that the characteristic equation is
AY — 1047 + 314 - 30 = Q,
the factored form of which is
(A—2i—3)HL—-95=0.
We thus sce that the characteristic values of A are
Ay =2, 4;=3, and ;=05



These are distinct {and real), and so Theorem 7.16 applies. We thus proceed to find
characteristic vectors &'', a'®, &® corresponding respectively to 4,, 4,, 43. We use the
defining equation

Aa = ja (7.145)
to do this.
For i = 4; =2and
oy
a=a'l=|ga,]|,
@3

defining equation (7.145) becomes

? _l 6 fxl 13]_
‘—"10 4 —12 ﬂ.z =2 uz .

—2 1 —1 ﬂj t'.l!3

Performing the indicated multiplications and equating corresponding components of
this, we find

T, — oy + 6x3 = 2a,,
=100, + dot; — 1205 = 24,,
—2y + @y — O3 = 2ax,.
Simplifying, we find that «,, «,, o, must satisfy
Sa, — o+ bay =0,
—10a, + 22, — 12a3 =0, (7.152)
—2a, + @, — 3a3=0,
The second of these three equations is merely a constant maltiple of the first. Thus we
seck nonzero numbers x,, o,, «; that satisfy the first and third of these equations.
Writing these two as equations in the unknowns %, and a;, we have
— 0y + by = —Say,
m:r-— Jog = 2oy,
Solving for o, and o, we find

ay = —d; and oy = —a,.

A simple nontrivial solution of thisise; = 1,0 = —1, a3 = — 1, Thatis, a, = 1,a, =
—1,a3 = —1 isa simple nontrivial solution of the system (7.152). Thus a characteristic
vector corresponding to A, = 2 is



—1
Then by Theorem 7.16,
1 et
x=1{—1le?, thatis, |—e?' |, {7.153)
—1 _ez:
is a solution of {7.151).
Fori=1,=3and
%y
a=a?=|qg,|,
%3
(7.145) becomes
7 -1 6 2 9 %y
10 4 —12]|a;|=3]a].
-2 1 ~1jla, oy

Performing the indicated multiplications and equating corresponding components of
this and then simplifying, we find that &, «,, 3 must satisfy

da, — x; + b2y =0,
~ 100, + a; — 1225, =0,
=200 + 0y — 403 =0,
From these we find that
o; = —2u, and a3 = —ua,.

A simple nontrivial solution of thisis oy, = 1,2, = —2,x5 = — 1. Thus a characteristic
vector corresponding to 4, = 3 is

1
a? =2}
-1
Then by Theorem 7.16,
1 ﬂ"'
X=[-2 i."']", that iﬂ, —2eM ]
" e (7.154)

is a solution of (7.151).



For A=A, =5and

&y
a=a =[a,i,
@y
(7.143) becomes
7 -1 6\ e, oy
—10 4 12| ay|=5]e,|.
—2 I _1 :I; EE;

Performing the indicated multiplications and equating corresponding components of
this, and then simplifying, we find that «,, 5, 2, must satisfy

2;‘1 —ﬂ: <+ 6“3 =0,
—lﬂﬂl - Et: - 12“3 = U,

— 20, + 2y — Guy =0,

From these we find that
a; = —22; and 3g; = —2a,.
A simplc nontrivial solution of thisis @y = 3,x; = —6, 23 = —2. Thus a characteristic
vector corresponding to A; = 5 is
3
P =[—-6].
-2
Then by Theorem 7.16,
3 e
Xx=|=6]|e* thatis, |—6e*
3 iy (7.155)

is a solution of (7.151).
Also by Theorem 7.16, the solutions {7.153), (7.154), and (7.155) are linearly inde-
pendent, and a general solution is

el ey e
X=0¢ | —e¥|+cy| 2] 4+ cy| —6e*|,
_Eil _elt _zem

where ¢,, c;, and ¢; are arbitrary constants. That is, in scalar language, a general
solution of the homogeneous lincar system (7.150) is



x, = ce®+ ce™ + 3eje™,

Xy = —cye? — 2c,e” — 6c,e”,

2t

Xy = ~c g% — ce% — 2c4e”,

where ¢, ¢;, and ¢, are nrhitrai'jr constants.
We return to the homogeneous linear system (7.136}, that 1s, the vector dilerential
cquation

dx
5 = Ax (7.139)

where A is an n x n real constant matrix, and reconsider the result stated in Theorem
7.16.1n that theorem we stated that if each of the n characteristic values 4,, 43, ..., 4, of
Ais distinct and if &', &'P, ..., 2" is a set of n respective corresponding characteristic
vectors of A, then the n functions defined by

utlle‘lltr ﬂ{z.lenizi, . u[.}ejhl

form a fundamental set of solutions of {7.139). Note that although we assume that 4,,
Agy..., A are distinct, we do not require that they be real. Thus distinct complex
characteristic values may be present. However, since A is a real matrix, any complex
characteristic values must occur in ¢onjugate pairs. Suppose A, = a + bi and 4; =
a — bi form such a pair. Then the corresponding solutions are

and these solutions are complex solutions. Thus if one or more distinct conjugate-

complex pairs of characteristic values occur, the fundamental set defined by a'®e?",

i=1,2,...,n contains complex functions. However, in such a case, this fundamental

set may be replaced by another fundamental set, all of whoss members are real func-
tion.

Case of Repeated Characteristic VValues

We again consider the vector differential equation

—— = 7.
i Ax, (7.139)

where A is an n > nreal constant matrix; but lrere we give an introduction to the case in
which A has a repeated characteristic value. To be definite, we suppose that A has a real
characteristic value A, of multiplicity m, where 1 < m < n, and that all the other
characteristic values 4., i, Any3,..., 4, (if there are any) are distinct. By result G of



Section 7.5D), we know that the repeated characteristic value 4, of multiplicity m has p
linearly independent characteristic vectors, where 1 < p < m. Now consider two
subcases; (1) p =m; and (2) p < m.

In Subcase (1), p = m, there are m lincarly independent characteristic vectors e'!),
w'®, ..., 2" corresponding to the characteristic value %, of multiplicity . Then the »
functions defined by

atlled 3 flﬂ}ei't, - u‘”‘e"", PRLASUIE M e a1 g Ant

form a linearly iﬁdcpcndent sct of n solutions of differential equation (7.139); and a
general solution of (7.139) is a linear combination of these n solutions having n
arbitrary numbers as the “constants of combination.”

EXAMPLE-2:

Consider the homogeneous kinear system

dx
d_tl-*3.x‘+ A= X4,
D2y 4 3y — X, (7.156)
dr
dx
d—:‘=3x,+3xz-xa,
or In matrix form,
ax f .‘t _} x, where x il
— _ . = 2
1 T.157
1y 3 X3 (7.157)

Assuming a solution of the form
x = e,
that is,

X, =a 8", X, =a,e", xy=ase"

we know that 4 must be a solution of the characteristic equation of the coefficient
matrix

- 31 —1
A=[1 3 —1/.
33 -1

This characteristic equation is



3—4 1 —1
A —il=] 1 -4 -1 |=0
3 3 —-1-4
Expanding the determinant and simplifying, we see that the characteristic equation is
iP—5+8i—4=0,

the factored form of which is

(A — 1A= 2(iL~2)=0.
We thus see that the characteristic values of A are

Ay=1, =2 and Ay=2.

Note that whereas the number | is a distinct characteristic vaiue of A, the number 2isa
repeated characteristic value. We again use

Ax = ja (7.145)
to find characteristic vectors corresponding to these characteristic values.

Ford =1, and

&y
2x = uz '
*x3
(7.145) becomes
1 3 -1 22 =] X1 41
313 ~1f\o, o5

Performing the indicated multiplications and equating corresponding components of
this and then simplifying, we find that o, a,, @; must be a nontrivial solution of the
system

20 + oy — o3 =0,
o, + 20, — o3 =0,
Joy + 303 — 203 =0,
One readily sees that such a solution is given by
a, =1, ay=1, ay=23.

Thus a characteristic vector corresponding to 4, = 1 is



Then

i e
Xx=1[1]¢, thatis, e, 17.158)
3 e

is a solution of (7.157).

We now turn to the repeated characteristic value .?LI = 43 = 2. In terms of the
discussion just preceding this example, this characteristic value 2 has multiplicity
m=2<3=n, where n = 3 is the common number of rows and columns of the

coefficient matrix A. For A = 2 and

&y
i R (7.159)
&y
(7.145) becomes
3 ] —1 a, Xy
1 3‘ — 1 EI: = 2 az -

Equating corresponding coefficients of this and simplifying, we find that «,, a,, a; must
be a nontrivial solution of the system

a1+ uz"" ﬂ3=ﬂ',
2y + EJ_- -‘.I3=I1,
3ot + Jay —~ Jay = 0.

Note that each of these three relations is equivalent to each of the other two, and so the
only relationship among a,, «,, 4 is that given most simply by

oy + 0y —ay =0 (7.1605
Observe that
oy =1, oy=—1, ;=0
and

=1 a,=0 ay=1
are two distinct solutions of this relation (7.160). The corresponding vectors of the form
(7.159} are thus



1
a?t=|—-1]| and ' ¥ =
0

respectively. Since each satisfies (7.145) with 1 = 2, each is a characteristic vector
corresponding to the double root A; = 4; = 2. Furthermore, using the definition of
linear independence of a set of constant vectors, one sees that these vectors &> and o'
are linearly independent. Thus the characteristic value 4 = 2 of multiplicity m = 2 has
the p = 2 linearly independent characteristic vectors

[ e TS
o

ot 1
a#B=|—-1| and «P=]|0
0 1

corresponding to it. Hence this is an illustration of Subcase (1) of the discussion
preceding this example. Thus, corresponding to the twofold characteristic value 4 = 2,
there are two linearly independent solutions of system (7.157) of the form ae™. These
are '

u{z‘.le!t and u[ilelt,

that is,
that is,
1
—1}le? and |0]e%,
1
or
e!l Ez:
—e| and (0 |, (7.161)
0 Ezr
respectively.
The three solutions
el Ezr E:t
el, |—€e*]|, and {0
33' 0 2r

given by (7.158) and (7.161) are linearly independent, and a general solution is



e EZI

e €
x=¢;] €|+e;|—e¥{+c310 |,
3¢ 0 et

where ¢,, c,, and ¢, are arbitrary constants. That is, in scalar language, a gencral
solution of the homogencous linear system (7.156) is

x,=c¢e" +(c; + Ca]ﬁ'zra
X, = 0,8 — e,
X, = 3, 1‘

3 = 1€ -+ Ca€7,

where ¢, ¢, and ¢, are arbitrary numbers.

One type of vector differential equation (7.139) which always leads to Subcase (1),
p = m, in the case of a repeated characteristic value 4, is that in which the n x n
coefficient matrix A of (7.139) is a real symmetric matrix. For then, by Result J of
Section 7.5D, there always exist n lincarly independent characteristic vectors of A,
regardless of whether the n characteristic values of A are all distinct or not.

We now turn to a consideration of Subcase(2), p < m. In this case, there are less than
m linearly independent characteristic vectors a‘!’ corresponding to the characteristic
value 4, of multiplicity m. Hence there are less than m linearly independent solutions of
system (7.136) of the form Uttt corresponding to A,. Thus there is not a full set of n
linearly independent solutions of (7.136) of the basic exponential form a®'e*<, where 4,
is a characteristic value of A and a™ js a characteristic vector currespnnding to Ay
Clearly we must seek linearly independent solutions of another form.

To discover what other forms of solution to seck, we first look back at the analogous
situation in Section 7.6C. The results there suggest the following:

Let 4 be a characteristic value of multiplicity m = 2. Suppese p = 1 < m, so that
there is only one type of characteristic vector a and hence only one type of selution of
the basic exponential form ae?* corresponding to 4. Then a linearly independent

solution is of the form
{a + Ple”,

where o 15 a characteristic vector cﬁfrespnnding to A, that is, o satisfies 1

(A—ADx=0
and P is a vectar which satisfies the equation
(A-ADp =o.

Now let 4 be a characteristic value of multiplicity m = 3 and suppose p < m, Here
there are two possibilities: p=1and p = 2.

If p = 1, there is only one type of characteristic vector a and hence only one type of
solution of the form



e (7.162)

corresponding to A. Then a second sclution corresponding to 4 is of the form

(a + Be*, (7.163)
where & is a characteristic value corresponding to 4, that is, o satisfies
(A — ADa =0; {7.164)
and B is a vector which satisfies the equation
(A — AP = & (7.165)
In this case, a third solution cﬁrrcspnnding to 4 1s of the form
| 2
( ‘2! + Bt + ‘f) (7.166)
where a satisfies (7.164), B satisfies {7.165), and ¥ satisfies
(A —ihy =B (7.167)

The three solutions (7.162), {7.163), and (7.166} 5o I'uund are linearly independent.

If p=2, there are two linearly independent characteristic vectors &' and a
corresponding to A and hence there are two lmeariy independent solutions of the
form

{2y

allleht and a'?e’, (7.168)

Then a third solution corresponding to 4 1s of the form

(at + P)e*', (7.169)
where a satisfies
(A-iDa=10, (7.170)
and P satisfies
(A-Alp=a . (7.171)

Now we must be careful here. Let us explain: Since a''’ and &'® are both characteris-
tic vectors corrcsponding to 4, both @ = a'V and a = &'?' satisfy (7.170). However, 1n
general, neither of these values of & will be such that the resulting equation {7.171)in
will have a nontrivial solution for B. Thus, instead of using the simple solutions &'’ or
a'? of (7.170), a more general solution of that equation is needed. Such a solution is
provided by

a = ka4 ka?, (7.172)
where k, and k; are suitable constants. We now substitute (7.172) for et in1 (7.171) and
determine k, and k, so that the resuiting equation in B will have a nontrivial solution for



P. With these values chosern for k, and k;, we thus have the required @ and now find the
desired nontrivial p. The three resulting solutions (7.168) and (7.169) thus determined
are linearly independent. We illustrate this situation in the following example.

EXAMPLE 3:




Consider the homogeneous linear system

dx
E[L= 4x, + 3x; + x;,
dx
—2 = 4x, - 4x, — 2x,, (7.173)
dt
dx
d_: = Bx, + 12x; + 6x,,
or in matrix form,
dx 4 3 1 Xy
g —4 —4 =2|x, where x={x,|. (7.174)
12 ﬁ X3
Assuming a solution of the form
X = HEM,
that is,
x; = w8, x, =oeM, x; = aze”,

we know that 2 must be a solution of the characteristic equation of the cocfficient
matrix

4 3 1
A=|-4 -4 --2;.
g8 12 6
This characteristic equation is
44 3 1

-4 —-4-, -=2]=0

8 12 6— A

A — Al =

Expanding the determinant and simplifying, we see that the characteristic equation is

AP —612+121—-8=0,
the factored form of which is{A — 2)° = 0. We thus see that the characteristic values of
A are

Al=l1=jr]=2.

That is, the number 2 is a triple characteristic value of A. We again use
Ax = la (7.145)



to find the corresponding characteristic vector(s) a.

With A = 2 and
oy
=3 X2,
%, (7.175)
{7.145) becomes

4 3 1 '511\ oy
‘—4 —4 _2 !11 = 2 ﬂ]_ .
8 12 6 Xy

Xa

Performing the indicated multiplications and equating corresponding components of
this and then simplifying, we find that «,, x,, 2, must be & nontrivial solution of the
syslem

21.'Il+ 3I'II+ d3=0,
-—4&'1“— 6&1—2&3=0,
8, + 12a; + dutz = 0,

Each of these three relationships is equivalent to each of the other two, and so the only
relationship among «;, 5, &, is that given most simply by

oty + 3o, + =0 (7.176)
Observe that
gy =1, ;=0 o3=-—2
and
g, =0 o,=1, a3=-3

are two distinct solutions of relation (T.I’I%]. The corresponding vectors of the form
(7.175) are thus

1 0
al" =] 0| and o = 11,
-2 -3

respectively. Since each satisfies (7.145) with 1 = 2, each is a charactenstic vector
corresponding to the triple characteristic value 2. Furthermore, it is easy to sec that the
two characteristic vectors a''? and &'’ are linearly independent, whereas every set of
thrée characteristic vectors corresponding to characteristic value 2 are linearly
dependent. Thus the characteristic value A = 2 of multiplicity m =3 has the p=2
linearly independent characteristic vectors



! 0
a=f 0{ and a®P=| | (7.177)
-2 -3

corresponding to it. Hence this is an illustration of the situation described in the
paragraph immediately preceding this example. Thus corresponding to the triple
characteristic value 4 = 2 there are two linearly independent solutions of system (7.173)
of the form ae™, These are a'Ve? and a'¥e?, that is,

1 0
0 |e* and 1]e¥,
-2 -3
or
el 0
0 and ey,
' —21‘.'2' —3&2' {71?3]
respectively. ,
A third solution corresponding to A = 2 is of the form
(ar + Ble?, (7.179)
where a satisfies
(A —-2Dx=10 (7.18G)
and f satisfies
(A - 20)B = o (7.181)

Since both '’ and a** given by (7.177) are characteristic vectors of A corresponding to
4 = 2, they both satisfy (7.180). But, as noted in the paragraph immediately preceding
this example, we need to use the more general solution

a = ko'’ + k,a'?

of (7.180) in order to obtain a nontrivial solution for P in (7.181).
Thus we let

ky B,
a = ka4 ka® = ka and P=18,],
—'zk-l - 3&2 ﬁa

and then (7.181) becomes



23 U\ [B, k,
""‘4 —’6 —*2 ﬁ] = kl
§ 12 4/\p, — 2k, — 3k,

Performing the indicated multiplications and equating corresponding components of
this, we obtain
28+ 3B+ Br= k.
—4f, — 6B, — zﬂa = Kz (1.182)
88, + 128, + 48, = -2k, -- 3k,.

Observe that the left members of these three relations are all proportional to one
another. Using any two of the relations, we find that k, = — 2k,. A simple nontrivial

solution of this last relation is k, = 1, k, = — 2. With this choice of k, and k;, we find
1
o= |—21;
’ 7.183
4 (7.183)

and the relations (7,182} become
2B+ 3P+ By= 1,
—4f, — 6, — 26, - -2,
88, + 128, + 48, = 4,
Each of these is equivalent to
28, + 38, + =1
A nentrivial solution of this is

Bi=82=0, By=1
and thus we obtain

0
p= ? ' (7.184)
Therefore, with a given by (7.183) and P given by (7.184), the third solution (7.179) 15
! 0
=2t +]0| %,
4 H

that is,



that 1s,
IE 2

— 2te™
(@t + 1)e?

The three solutions defined by {7.178) and (7.185) are linearly independent, and a
general solution is the linear combination

(7.185)

EZI 0 IEII
{1 0 + €2 e’ |+ Ca - 2te™
—282' _3‘?1: {4: + ”ezr

of these three, where ¢,, ¢,, ¢, are arbitrary constants. That is, in component form, a
general solution of system (7.173) is

xl - CIEZI + L‘_,,h?lr,
Xy = e — 2cyte™,
xy = —2c,e% — c,e + cy(dt + e,

where ¢, ¢,, ¢, are arbitrary constants.




Exercises

Find the general solution of each of the hotmegeneous linear systems in Exercises 1-24,

where in ¢ach exercise
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